Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photosynthesis re-wired

29.06.2012
Boston College chemists use nanowires to power photosynthesis
Harnessing the power of the sun has inspired scientists and engineers to look for ways to turn sunlight into clean energy to heat houses, fuel factories and power devices. While a majority of this research focuses on energy production, some researchers are looking at the potential uses of these novel solar technologies in other areas.

Boston College Assistant Professor of Chemistry Dunwei Wang's work with silicon nanowires and his related construct, Nanonets, has shown these stable, tiny wire-like structures can be used in processes ranging from energy collection to hydrogen-generating water-splitting.

Teaming up with fellow Boston College Assistant Professor of Chemistry Kian L. Tan, the researchers have taken aim at a role for nanowires in photosynthesis.

Their work has produced a process that closely resembles photosynthesis, employing silicon nanowires to collect light energy to power reactions capable of synthesizing the basic compounds of two popular pain-killing, anti-inflammatory drugs, they report in the current edition of Angewandte Chemie, the journal of the German Chemical Society.

The reaction sequence offers an approach that differs from earlier attempts to sequester carbon dioxide with sunlight and solves the vexing problem of carbon's low selectivity, which so far has limited earlier methods to the production of fuels. Tan and Wang report their process offers the selectivity required to produce complex organic intermediaries capable of developing pharmaceuticals and high-value chemicals.

The process succeeds in taming stubborn carbon, which structurally resists most efforts to harness it for a single chemical product. Typically, refined forms of carbon molecules must first be produced to produce the necessary results.

"If we can start to use carbon dioxide and light to power reactions in organic chemistry, there's a huge benefit to that. It allows you to bypass the middle man of fossil fuels by using light to drive the chemical reaction," said Tan. "The key is the interaction of two fields – materials and synthetic chemistry. Separately, these fields may not have accomplished this on their own. But together, we combined our knowledge to make it work."

During photosynthesis, plants capture sunlight and use this solar energy and carbon dioxide to fuel chemical reactions.

Tan and Wang used silicon nanowires as a photocathode, exploiting the wire's efficient means of converting solar energy to electrical energy. Electrons released from the atoms in the nanowires are then transferred to organic molecules to trigger chemical reactions.

In this case, the researchers used aromatic ketones, which when struck by electrons become active and attack and bind carbon dioxide. Further steps produced an acid that allowed the team to create the precursors to ibuprofen and naproxen with high selectivity and high yield, the team reports.

Tan and Wang were joined in the research by Research Assistant Guangbi Yuan, PhD '12, graduate student Rui Liu, doctoral student Candice L. Joe, and former doctoral student Thomas E. Lightburn, PhD '11.

Tan said it is no accident that the process so closely resembles natural photosynthesis, as chemists are constantly drawing inspiration from nature in their work.

"Researchers in my field are always drawing inspiration from nature," said Tan. "You take the basic lessons and you try to do it in an artificial way. In this work, we're trying to learn lessons from nature, although we can't copy nature directly."

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>