Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phages transducing antibiotic resistance detected in chicken meat

21.05.2015

Bacteria resistant to antibiotics are on the rise. There are different explanations for how these resistances are transferred. Researchers from the Vetmeduni Vienna found phages in chicken meat that are able to transfer antimicrobial resistance to bacteria. Phages are viruses that exclusively infect bacteria and are therefore harmless to humans. However, phages can contribute to the spread of antimicrobial resistance. These findings are not only relevant for the food industry but also for medicine. The study was published in the journal Applied and Environmental Microbiology.

Antimicrobial resistance in bacteria poses a global threat to public health. Common antibiotics are often ineffective in treating infectious diseases because pathogens acquire resistance genes. These antimicrobial resistance genes are obtained in different ways.


Elektron microscopic picture of a bacteriaphage.

Photo: Szostak/Dinhopl/Vetmeduni Vienna

„The most frequent way is the transfer via mobile genetic elements such as plasmids, or via transposons, the so-called jumping genes,” explains Friederike Hilbert, scientist at the Institute of Meat Hygiene at the Vetmeduni Vienna. “Transfer of resistances via phages was thought to play a minor role so far.”

Hilbert and her colleagues isolated phages from 50 chicken samples purchased from Austrian supermarkets, street markets and butchers. They found phages in 49 samples. “Phages do not pose a risk to humans because they can only infect bacteria. No other cells or organisms can be infected.”

Their analysis showed that one quarter of the phages under study were able to transduce antimicrobial resistance to E. coli bacteria under laboratory conditions. They transduced resistance to kanamycin, tetracycline, ampicillin, and chloramphenicol. No phage was able to transduce resistance to an extended-spectrum beta-lactam resistance (ESBL).

“This mechanism could also be important in clinical settings, where multiresistant pathogens are on the rise. We assume that phages acquire resistance genes from already resistant bacteria and then transfer those genes to other bacteria,” says Hilbert.
“Our results could explain why resistances spread so rapidly among bacteria.”

Catalysts for evolution

Scientists have known for a while that phages are able to transduce genes but this was considered a rare event for genes encoding resistance to antibiotics. Newer DNA analyses show, however, that phages leave their signature in bacterial genomes. This way of transfer is presumably more frequent than thought. Phages may therefore play a major role in bacterial evolution.

Phages are more robust than bacteria

Compared to bacteria, phages are significantly more resistant to disinfectants. Alcohol, in particular, is hardly active against phages. “Common disinfection methods are often inappropriate against phages,” Hilbert underlines. The food industry and also hospitals may choose disinfectants that are active against bacteria, but might be ineffective against phages.

Focussing on phage therapy

Treating bacterial infections with phages has become a promising alternative combating antimicrobial-resistant pathogens where phages directly combat bacteria. Hilbert recommends to test therapeutic phages for their ability to transfer resistance genes. The combination of phages and multiresistant pathogens could otherwise result in a hazardous cocktail of phages transferring multiresistance genes.”

Service:
Der Artikel „Bacteriophages isolated from chicken meat and the horizontal transfer of antimicrobial resistance genes” von Amira Shousha, Nattakarn Awaiwanont, Dmitrij Sofka, Frans J.M. Smulders, Peter Paulsen, Michael P. Szostak, Tom Humphrey und Friederike Hilbert wurde in Applied and Environmental Microbiology veröffentlicht. doi: 10.1128/AEM.00872-15
http://aem.asm.org/content/early/2015/04/27/AEM.00872-15.long

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Ao.Univ.-Prof. Friederike Hilbert
Institut of Meat Hygiene
University of Veterinary Medicine, Vienna (Vetmeduni Vienna)
T +43 1 20577-3316
friederike.hilbert@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>