Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Personalized Medicine: Effective through AI in Transplantation Medicine - New Prediction Models

05.03.2019

If radiation or chemotherapy treatment of leukaemias or lymphomas does not bring sufficient success, the transplantation of bone marrow or blood stem cells is usually the only chance of cure. Unfortunately, the majority of patients die despite transplantation, often due to spontaneous infections, transplant versus recipient reactions and recurrences. New predictive models for the individual course of disease, as developed in the "XplOit" research project, predict the occurrence and extent of these risks and thus enable transplantation physicians to intervene at an early stage to save lives in dreaded complications.

Project network provides innovative IT platform for clinical data integration, model development and Validation -
Presentation of research results at the annual meeting of the European Society for Blood and Bone Marrow Transplantation


The new data integration, model development and validation platform "XplOit", which is provided by a project network under the leadership of the Fraunhofer Institute for Biomedical Engineering IBMT, facilitates the development and verification of these prediction models.

The innovative platform prepares data sets in such a way that they can be used for systems medicine research. Through effective predictive models for complications after stem cell transplantation, the joint project "XplOit" creates the basis for the future use of artificial intelligence in transplantation medicine.

The "XplOit" consortium will present its project results on March 25 at the 45th Annual Meeting of the European Society for Blood and Marrow Transplantation in Frankfurt, Germany (Messe Frankfurt, Forum level C, Room Kolleg, 2:30-3:45 pm, http://www.xploit-idsem.de/xploit-workshop-auf-dem-ebmt-am-25-maerz-2019.html). The first predictive AI models for allogeneic stem cell therapy provide sustainable results and will be presented at a workshop together with the "XplOit" platform.

New and effective prediction models

The "XplOit" platform has been tailored over the last 3 years for the development and validation of predictive models to improve treatment after stem cell transplantation. The transplantation of haematopoietic stem cells from donors is used, for example, for the treatment of various forms of leukaemia. Disease relapses are feared.

The first precise prediction models, which individually predict possible complications for each patient, will be available in the "XplOit" platform in 2019. This will enable life-threatening complications to be identified more quickly and treated earlier than today, such as the dreaded transplant vs. host reaction. Project coordinator Stephan Kiefer explains: "The comprehensive analysis of patient data creates for the first time the option for predicting individual disease progression. With the prototypes of the prediction models, we will enter clinical validation in March and refine our results."

The BMBF project "XplOit" facilitates and accelerates the time-consuming process of providing and combining clinical data, developing and validating models, and making them available for clinical use. A newly developed generation of advanced semantic data integration and information extraction tools makes this easier.

Predictive models can help clinicians diagnose and treat their patients. To develop these mathematical predictive models, a wide variety of clinical patient data from the information systems must be collected, harmonized and analyzed on a large scale. In the present project "XplOit", data protection is ensured when dealing with personal and sensitive patient information.

The complex prediction models obtained from the analysis of the data are first validated in the further course of the project and checked for their prediction accuracy before they can be used successfully in practice.

Partnership-based research for XplOit

The joint project "XplOit" is implemented by an internationally experienced, multidisciplinary team of experts from the fields of medicine, systems biology, computer linguistics as well as medical and bioinformatics. It is coordinated by the Fraunhofer Institute for Biomedical Engineering IBMT, which is in charge of the development of the "XplOit" platform and contributes core components to information extraction, integration and analysis.

The Institute for Formal Ontologies and Medical Information Science at Saarland University is primarily responsible for the platform's semantic integration framework. The company Averbis contributes tools for information extraction from clinical text documentations. Computer scientists from the Department of Pediatric Oncology and Hematology at Saarland University are responsible for data protection and develop pseudonymization tools and the system's modelling workbench.

The model development itself is carried out by the Medical Informatics Methods Department of the Eberhard-Karls-University Tübingen and the Clinical Pharmacy Department of the Saarland University. Clinical expertise and data are provided by the Clinic for Bone Marrow Transplantation and the Institute for Virology of the University Hospital Essen as well as by the Clinic for Internal Medicine I - Oncology, Hematology, Clinical Immunology, Rheumatology and the Institute for Virology of the University of Saarland. From March 2019, the clinical partners will validate the predictive models for stem cell transplantation developed with the help of the "XplOit" platform, coordinated by the Institute of Virology at Saarland University

XplOit is funded within the initiative i:DSem - Integrative Data Semantics in Systems Medicine by the Federal Ministry of Education and Research.

Duration: 01.03.2016 - 28.02.2021, Project website: http://www.xploit-idsem.de/

Fraunhofer IBMT

The Fraunhofer Institute for Biomedical Engineering IBMT is a device and technology developer for the solution of individual research and development tasks in the fields of biomedical/medical engineering, molecular and cellular biotechnology, bioprocesses & bioanalytics, cryo(bio)technology and nano(bio)technology, ultrasound technology, biomedical microsystems, neuroprosthetics and implants, health information systems, theranostics, (mobile) laboratory technology as well as laboratory automation including inline/online process monitoring. The Fraunhofer IBMT has been working in the field of stem cell research for more than 15 years and has extensive cell line stocks in industrially and clinically structured biobanks for the cryogenic storage of valuable samples (liquids, cells, tissue fragments).

Wissenschaftliche Ansprechpartner:

Dipl.-Inform. Stephan Kiefer
Fraunhofer Institute for Biomedical Engineering
Project Coordinator XplOit
Telephone: +49 (0) 6897/9071-406
E-Mail: stephan.kiefer@ibmt.fraunhofer.de

Weitere Informationen:

http://www.xploit-idsem.de/xploit-workshop-auf-dem-ebmt-am-25-maerz-2019.html (March 25, 2019 at the 45th Annual Meeting of the European Society for Blood and Marrow Transplantation in Frankfurt, Germany
http://www.xploit-idsem.de/ (Project Website)

Dipl.-Phys. Annette Maurer-von der Gathen | Fraunhofer-Institut für Biomedizinische Technik IBMT

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>