Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PER:PER protein pair required for circadian clock function

29.04.2009
Scientists from Queen Mary, University of London have discovered a new protein complex operating in fruit fly circadian clocks, which may also help to regulate our own biological clocks.

Circadian clocks are thought to have evolved to enable organisms to match their behaviour to specific time slots during the 24 hour day. They are synchronised with our surrounding environment via natural light or temperature cycles.

Professor Ralf Stanewsky and his team from Queen Mary's School of Biological and Chemical Sciences study the circadian clocks of Drosophila, a type of fruit fly. The flies' body-clocks are regulated by two proteins called Period (PER) and Timeless (TIM).

The current model of circadian clocks in flies involves the formation of complexes between these two different clock proteins, known as heterodimers (TIM:PER). Similarly, mammalian circadian clocks (including those in humans) also rely on a heterodimer complex made up of the Period (PER) and Cryptochrome (CRY) proteins.

But now, a new study performed in Professor Stanewsky's lab shows that a complex made of two identical Period proteins, known as a PER:PER homodimer is also crucial for circadian clock function in flies. Writing in the journal PLoS Biology, Stanewsky explains how his team designed a PER protein which could only join with TIM, not with itself.

"We generated a mutation in the PER protein which prevented the formation of the PER:PER dimer, but not that of the PER:TIM heterodimer," he explains. "These mutant flies showed drastically impaired behaviour and molecular clock function, suggesting that PER homodimers are vital for the function of circadian clocks."

The mutant fly PER proteins were designed using structural protein data generated by Dr Eva Wolf at the MPI in Dortmund (Germany). In the same issue of PLoS Biology the Wolf group reports findings indicating that the PER:PER homodimer could also be an important feature of circadian clocks in mammals, including humans.

Sian Halkyard | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>