Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New peptides to fight ovarian cancer drug resistance

02.08.2011
Italian and German scientists have designed peptides to target the protein-protein interface of a key enzyme in DNA synthesis crucial for cancer growth.

The peptides act by a novel inhibitory mechanism and curb cancer cell growth in drug resistant ovarian cancer cells. The interdisciplinary research project was led by the University of Modena and Reggio Emilia (UNIMORE) and the Heidelberg Institute for Theoretical Studies (HITS).


Structure of human thymidylate synthase with an inhibitory peptide bound at its dimer interface determined by x-ray crystallography. The protein is shown with a cartoon representation of its secondary structure colored according to sequence and the peptide is colored by atom-type with its electron density contoured in blue. Picture: Cardinale et al., PNAS (2011) 27 July 2011

Worldwide, over 200,000 women are diagnosed with ovarian cancer every year, with higher incidence in developed countries where it is the fifth leading cause of cancer-related deaths in women. Ovarian cancer has a high mortality rate due to frequent late diagnosis and the rapid development of drug resistance. Several clinically important anti-cancer drugs that are widely used in chemotherapy inhibit the enzyme, thymidylate synthase, which plays a key role in DNA synthesis. However, the use of these drugs is associated with drug resistance and new compounds with different inhibitory mechanisms are required to combat resistance.

Scientists from Italy and Germany have designed octapeptides that specifically target the protein-protein interface of thymidylate synthase. Thymidylate synthase is composed of two identical polypeptide chains, i.e. it is a homodimer. The peptides stabilize the inactive form of the enzyme, show a novel mechanism of inhibition for homodimeric enzymes, and inhibit cell growth in drug sensitive and resistant cancer cell lines.

The interdisciplinary collaboration between scientists in Italy and Germany, led by Maria Paola Costi and Glauco Ponterini at the University of Modena and Reggio Emilia, Stefano Mangani at the University of Siena (UNISI) and Rebecca Wade at Heidelberg Institute for Theoretical Studies (HITS), was part of the LIGHTS project (LIGands to interfere with human TS). The project was supported by the Sixth Framework Programme (FP6), an EU scheme to fund and promote European research and technological development.

The researchers have discovered several peptides that inhibit thymidylate synthase by modulating protein-protein interactions. Maria Paola Costi explains: “These peptides have sequences from the protein-protein interface of the enzyme and inhibit it by binding to a previously unknown allosteric binding site - that is, a site other than the protein's active site - at the protein-protein interface.” By a combination of experimental and computational approaches, it was shown that their inhibitory mechanism involving stabilization of an inactive form of the catalytic protein differs from those of protein-protein interface inhibitors reported to date.

Unlike the existing drugs targeting thymidylate synthase, these peptides inhibit intra-cellular thymidylate synthase and cell growth without leading to increased levels of thymidylate synthase protein when administered to ovarian cancer cells. “This observation indicates the potential value of these peptides in overcoming drug resistance problems, although the cellular effects remain to be fully explored,” says Rebecca Wade. Further steps will require optimization of the compounds discovered and detailed analysis of their cellular mechanism of action. The concepts revealed by this work can be expected to provide new avenues for the development of drugs for combating diseases such as ovarian cancer.

The original scientific article:
Cardinale et al., Protein-protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase. PNAS (2011) 27 July 2011 (published online before print).

doi: 10.1073/pnas.1104829108

http://www.pnas.org/cgi/doi/10.1073/pnas.1104829108

Press Contact
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533-245
Fax: +49-6221-533-198
peter.saueressig@h-its.org
www.h-its.org
Scientific Contacts
Prof. Maria Paola Costi
Dipartimento di Scienze Farmaceutiche,
Universita degli Studi di Modena e Reggio Emilia,
Via Campi 183,
41100 Modena,
Italy
Phone 0039-0592055125
Fax 0039-0592055131
mariapaola.costi@unimore.it
Prof. Stefano Mangani
Dipartimento di Chimica,
Università degli Studi di Siena,
Via Aldo Moro 2,
53100 Siena,
Italy
Phone 0039-0577-234255
Fax 0039-0577-243233
mangani@unisi.it
Dr. Rebecca Wade
Molecular and Cellular Modeling Group
Heidelberg Institute for Theoretical Studies (HITS)
Schloss-Wolfsbrunnenweg 35
69118 Heidelberg
Germany
Phone: +49 (0)6221 - 533 - 247
Fax: +49 (0)6221 - 533 - 298
rebecca.wade@h-its.org
University of Modena and Reggio Emilia (UNIMORE) is one of the oldest universities in Europe and currently has more than 20,000 students. Eight of the twelve faculties are located in Modena, among them the Biotechnology and Bioscience faculty with the Department of Pharmaceutical Sciences.

www.unimore.it

University of Siena (UNISI) is one of the oldest universities in Italy and currently has around 20,000 students. The university has nine schools, one of them being the School of Mathematical, Physical and Natural Sciences with the Department of Chemistry.

http://www.unisi.it

HITS (Heidelberg Institute for Theoretical Studies) is a private, non-profit research institute carrying out multidisciplinary research in the computational sciences. It was established in 2010 as a successor to the EML Research. HITS receives its base funding from the Klaus Tschira Foundation, which was established in 1995.

www.h-its.org

Dr. Peter Saueressig | idw
Further information:
http://www.h-its.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>