Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patterns of Chromosome Abnormality: The Key to Cancer?

24.01.2012
Chromosome aberrations happen in pairs when it comes to cancer, TAU research finds
A healthy genome is characterized by 23 pairs of chromosomes, and even a small change in this structure — such as an extra copy of a single chromosome — can lead to severe physical impairment. So it's no surprise that when it comes to cancer, chromosomal structure is frequently a contributing factor, says Prof. Ron Shamir of the Blavatnik School of Computer Science at Tel Aviv University.

Now Prof. Shamir and his former doctoral students Michal Ozery-Flato and Chaim Linhart, along with fellow researchers Prof. Shai Izraeli and Dr. Luba Trakhtenbrot from the Sheba Medical Center, have combined techniques from computer science and statistics to discover that many chromosomal pairs are lost or gained together across various cancer types. Moreover, the researchers discovered a new commonality of chromosomal aberrations among embryonic cancer types, such as kidney, skeleton, and liver cancers.

These findings, recently published in Genome Biology, could reveal more about the nature of cancer. As cancer develops, the genome becomes increasingly mutated — and identifying the pattern of mutation can help us to understand the nature and the progression of many different kinds of cancer, says Prof. Shamir.
As cancer progresses, the structure of chromosomes is rearranged, individual chromosomes are duplicated or lost, and the genome becomes abnormal. Some forms of cancer can even be diagnosed by identifying individual chromosomal aberrations, notes Prof. Shamir, pointing to the example of a specific type of leukemia that is caused by small piece of chromosome 9 being moved to chromosome 22.

When analyzing many different kinds of cancer, however, the researchers discovered that chromosomal aberrations among different cancers happen together in a noticeable and significant way. The researchers studied a collection of more than fifty thousand cancer karyotypes — representations of chromosomal layouts in a single cell — and charted them according to commonalities. The researchers were not only able to confirm different chromosomal aberrations that appeared in specific cancer types, but also for the first time identified a broader effect of pairs of chromosomes being lost or gained together across different cancer types.

It was also the first time that researchers saw a connection among solid kidney, skeleton, and liver cancers. While it was known that these cancers all develop in the embryo, they were previously analyzed independently. The TAU researchers have now confirmed that they share chromosomal characteristics and aberrations, much like various forms of leukemia or lymphomas.

Aberrations a driving force for cancer

Under normal circumstances, even a small change to a person's chromosomal structure can be devastating. For example, Down's syndrome is caused by a single extra copy of Chromosome 21. "But in cancer, there are many cases of extra or missing chromosomes. Yet cancer cells thrive more effectively than other cells," Prof. Shamir says.

Prof. Shamir hopes that future investigation into these chromosomal aberrations will give researchers more clues into why something that is so detrimental to our healthy development is so beneficial to this disease. Cancer is the result of sequences of events, he says, each causing the genome to become more mutated, mixed, and duplicated. Tracking these changes could aid our understanding of the driving forces of cancer's progress.

Prof. Shamir heads the Edmond J. Safra Program for Bioinformatics and holds the Raymond and Beverly Sackler Chair in Bioinformatics.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Abnormality Bioinformatics Chromosom 15 Tau liver cancer

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>