Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The pathway into the cell

17.02.2012
MATHEON mathematicians are helping to unravel molecular processes

“Imagine an inflated balloon attached to a pump, but much, much smaller. By pinching off the neck of the balloon with a noose, it is detached from the pump and is able to move about freely.” The description is an approximation of one of the molecular processes looked at by mathematician Dr. Frank Noe as part of MATHEON’S ‘A19, Modelling and Optimisation of Functional Molecules’ project. Specifically, the molecular structure and mechanism of dynamin.


In the case of dynamin, the precise mechanism of action can be visualised in individual steps
Noe

Dynamin is a protein and the ‘noose’ which detaches the balloon from the pump. The vesicle (the scientific name for the balloon) has to be detached to allow it to perform its role as a vesicle for transporting messenger substances and nutrients into the cell. Substances which need to be transported into the cell first accumulate in a vesicle formed by invagination from the surface of the cell. The dynamin molecule then attaches to the neck of the vesicle and forms a spiral around it. It then severs the neck of the vesicle. The vesicle is now free to transport nutrients into the cell.

Whilst scientists have long known about the process, the molecular details of how dynamin works were until now unknown. A group of researchers at the Max Delbrück Center for Molecular Medicine (MDC) in Berlin has now managed to obtain snapshots of the detailed molecular structure and, with the help of mathematical research carried out by Frank Noe and his team at MATHEON, been able to breathe life into these static structures.

“Without mathematical methods, it would not have been possible to simulate the processes which occur when the neck of the vesicle is severed,” explains the mathematician.

Simulating this molecular process is extremely difficult. “A simulation encompasses 250,000 particles and each iteration of the calculation takes around 1 second, even on a mainframe. To directly simulate this process, we would have to perform millions of iterations. That would take decades – scission within the cell takes just milliseconds.” With the help of mathematical methods developed at MATHEON, it was possible to divide the scission process up into many smaller, more manageable simulations.

In the case of dynamin, this allowed the precise mechanism of action to be visualised in individual steps. It turns out that the molecule operates via a specific pathway. “We were able to identify three primary states of the molecule,” explains the mathematician, describing the process as follows, “Initially, dynamin molecules attach to the neck of the vesicle individually, before linking up to form between one and a half and two tight turns around the neck of the vesicle. This structure then expands like a spring and rotates in on itself. The result is that the semi-fluid material making up the neck of the vesicle is more or less ripped apart. “

Understanding this process is important for medical science, as it represents a point of attack for fighting poisons and disease. “Many neurotoxins, for example, act at this point, thereby blocking nerve function,” explains Frank Noe. Degenerative neurological diseases such as Parkinson’s also affect the uptake of vesicles by nerve cells. “If we can obtain a better understanding of the mechanism of dynamin, we may be able to find new approaches to early diagnosis or treatments,” says Dr. Noe.

Collaboration between doctors, structural biologists and mathematicians in this area is set to continue. “The mathematical research being carried out within the MATHEON project will continue to make an important contribution to producing further useful insights,” explains Frank Noe.

The study has been published in the journal ‘Nature’, issue 477, page 556. Further information on the study can be found at
http://www.nature.com/nature/journal/v477/n7366/full/nature10369.html
and
www.biocomputing-berlin.de/biocomputing/en/projects/matheon_project_
a19_modelling_and_optimization_of_functional_molecules
Frank Noe will also be happy to provide you with further information and can be contacted by telephone on 030 838 75354 or by email at noe@math.fu-berlin.de

Rudolf Kellermann | idw
Further information:
http://www.matheon.de/
http://numerik.mi.fu-berlin.de/Forschung/Noe/index.php

More articles from Life Sciences:

nachricht Insights into the origin of life: how the first protocells divided
19.02.2020 | Universität Augsburg

nachricht Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria
18.02.2020 | Heinrich-Heine-Universität Düsseldorf

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Mobile smart homes and expanded living labs: DFKI and TU Berlin make the future of living more accessible

19.02.2020 | Architecture and Construction

Insights into the origin of life: how the first protocells divided

19.02.2020 | Life Sciences

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>