Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathogenic plant virus jumps to honeybees

21.01.2014
A viral pathogen that typically infects plants has been found in honeybees and could help explain their decline. Researchers working in the U.S. and Beijing, China report their findings in mBio, the online open-access journal of the American Society for Microbiology.

The routine screening of bees for frequent and rare viruses "resulted in the serendipitous detection of Tobacco Ringspot Virus, or TRSV, and prompted an investigation into whether this plant-infecting virus could also cause systemic infection in the bees," says Yan Ping Chen from the U.S. Department of Agriculture's Agricultural Research Service (ARS) laboratory in Beltsville, Maryland, an author on the study.

"The results of our study provide the first evidence that honeybees exposed to virus-contaminated pollen can also be infected and that the infection becomes widespread in their bodies," says lead author Ji Lian Li, at the Chinese Academy of Agricultural Science in Beijing.

"We already know that honeybees, Apis melllifera, can transmit TRSV when they move from flower to flower, likely spreading the virus from one plant to another," Chen adds.

Notably, about 5% of known plant viruses are pollen-transmitted and thus potential sources of host-jumping viruses. RNA viruses tend to be particularly dangerous because they lack the 3'-5' proofreading function which edits out errors in replicated genomes. As a result, viruses such as TRSV generate a flood of variant copies with differing infective properties.

One consequence of such high replication rates are populations of RNA viruses thought to exist as "quasispecies," clouds of genetically related variants that appear to work together to determine the pathology of their hosts. These sources of genetic diversity, coupled with large population sizes, further facilitate the adaption of RNA viruses to new selective conditions such as those imposed by novel hosts. "Thus, RNA viruses are a likely source of emerging and reemerging infectious diseases," explain these researchers.

Toxic viral cocktails appear to have a strong link with honey bee Colony Collapse Disorder (CCD), a mysterious malady that abruptly wiped out entire hives across the United States and was first reported in 2006. Israel Acute Paralysis Virus (IAPV), Acute Bee Paralysis Virus (ABPV), Chronic Paralysis Virus (CPV), Kashmir Bee Virus (KBV), Deformed Wing Bee Virus (DWV), Black Queen Cell Virus (BQCV) and Sacbrood Virus (SBV) are other known causes of honeybee viral disease.

When these researchers investigated bee colonies classified as "strong" or "weak," TRSV and other viruses were more common in the weak colonies than they were in the strong ones. Bee populations with high levels of multiple viral infections began failing in late fall and perished before February, these researchers report. In contrast, those in colonies with fewer viral assaults survived the entire cold winter months.

TRSV was also detected inside the bodies of Varroa mites, a "vampire" parasite that transmits viruses between bees while feeding on their blood. However, unlike honeybees, the mite-associated TRSV was restricted to their gastric cecum indicating that the mites likely facilitate the horizontal spread of TRSV within the hive without becoming diseased themselves. The fact that infected queens lay infected eggs convinced these scientists that TRSV could also be transmitted vertically from the queen mother to her offspring.

"The increasing prevalence of TRSV in conjunction with other bee viruses is associated with a gradual decline of host populations and supports the view that viral infections have a significant negative impact on colony survival," these researchers conclude. Thus, they call for increased surveillance of potential host-jumping events as an integrated part of insect pollinator management programs.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>