Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Party discipline for jumping genes

22.09.2017

Jumping genes, transposons, are a part of the genome of most organisms and aggregated into families according to their relatedness. Through jumping they change their place in the genome and can damage it. How the hosts of the transposons supress the jumping is well investigated. Why they still can jump has hardly been understood so far. An important step is to understand which transposon properties and host environments facilitate jumping – this has now been investigated by researchers from Vetmeduni Vienna for the first time in all transposons of the host organism. The study showed that family affiliation is much more important than their position in the genome. Molecular Ecology

The genome of a typical organism consists of many genes that are stringed like beads. This alignment has been surprisingly stable even over very long evolutionary periods. In addition to these genes, there are also many mobile elements, referred to as parasitic, that are spread across the whole genome and aggregated into different families according to their relatedness.


Preparing to jump is familiy Business and host specific for transposons in Drosophila.

Martin Kapun

These jumping genes, the transposons, can easily change their position. Therefore, their position has not been evolutionarily conserved. When they change their position, they can, for instance, jump directly into functional genes, which changes the function of these genes or even inactivates them completely. Thus, host organisms have learned to control and reduce jumping.

However, despite all protective measures, there can be massive mobilisations of transposon families in stress situations. They have to provide specific tools (RNAs) for these situations. But what is the decisive information to produce these tools? Researchers from the Institute of Population Genetics of the University of Veterinary Medicine, Vienna have now shown for the first time that each transposon family interprets the signals in a cell in a different way and uses different strategies to decide about when to activate the tools for jumping in the genome.

Jumping genes are parasites

Although the share of transposon sequences in the genome of organisms may be high – about 45 per cent in humans –, they are discredited. Their jumping behaviour mostly damages the structure of the genome. Uncontrolled spread would result in the death of the cell. Therefore, the focus of transposon research was on strategies organisms use to suppress jumping.

Despite these protective measures, transposons jump under specific environmental conditions or stress. This observation shows that transposons must have mechanisms to avoid this control. Transposons need suitable tools for jumping. But it has not yet been understood, nor investigated in all transposon families how the production of these tools is regulated.

Therefore, the study by Ana Marija Jakšić investigated in a genome-wide analysis how transposons get prepared for jumping. For this purpose, the researchers exposed two different fruit fly populations to different temperatures. Then they mapped out the sequences of the jumping genes, using the “next generation sequencing” methods. They could show that almost all families produce tools that enable jumping, but the extent depends on two different factors.

“Our study has shown that the activity of transposons does not only depend on themselves but also on factors which the host cells produce,” explained Jakšić. In the gene sequence of transposons there is a binding site for host-specific factors which positively regulate the transcription of genes in the cells. Thus, two factors cooperate – the family-specific binding site and the host factors that are regulated through the environment and genetic background. “As all members of a family have the same binding sequences, all copies of the family members, spread across the genome, react in the same way to environmental influences,” said the lead author.

Party discipline for related transposable elements

“It was important for us to see that the position in the genome does not have a strong influence on the activity of a transposon,” said last author Christian Schlötterer. “As the members of a transposon family strongly resemble each other, they also share most of the binding sites. This means: When the signal for jumping is given, this affects the whole family – party discipline in a certain sense.”

Preparation for jumping can provide valuable information, not only about the transposons themselves but also about the effects of the change in position. The insertion of jumping genes is not necessarily bad for the structure of the genome. “Although transposons are discredited due to their mainly harmful mutagenic effect, their new position can have a positive influence on neighbouring genes. This can quickly lead to functional innovations. A very good example is resistance against insecticides in fruit flies: They became resistant to DDT because of a jumping transposon,” said Jakšić.

Service:
The article „Regulation of transposable elements: Interplay between TE-encoded regulatory sequences and host-specific trans-acting factors in Drosophila melanogaster“ by Ana Marija Jakšić, Robert Kofler and Christian Schlötterer was published in Molecular Ecology.
http://onlinelibrary.wiley.com/doi/10.1111/mec.14259/abstract

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Ana Marija Jakšić
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
AnaMarija.Jaksic@vetmeduni.ac.at
and
Christian Schlötterer
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4300
christian.schloetterer@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2017/...

Mag.rer.nat. Georg Mair | idw - Informationsdienst Wissenschaft

Further reports about: Veterinary Medicine genes jumping genes transposons

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>