Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particles Changing Angle: Unexpected Orientation in Capillaries

09.04.2013
When small particles flow through thin capillaries, they display an extremely unusual orientation behaviour. This has recently been discovered by a research team led by Prof. Stephan Förster and Prof. Walter Zimmermann (University of Bayreuth).

The participating scientists of Bayreuth University, the Radboud University Nijmegen, the research centre DESY in Hamburg, and the Max Planck Institute for Dynamics and Self-Organization in Göttingen report their new findings in the scientific journal PNAS. The discovery is of major importance for spinning processes designed for the production of synthetic fibres, and the understanding of vascular stenosis.


Microscopic image of a constricted capillary and a subsequent dilated section. Within the blue area, the particles orientate themselves parallel to the flow direction and in the orange area, perpendicular to the flow orientation.


Image: Department of Physical Chemistry I, University of Bayreuth; free for publication when references are included.


Scatter diagrams, originating from micro-X-ray experiments. A) Parallel orientation to the flow direction prior to the narrowing B) Perpendicular orientation to the flow direction after narrowing in the capillary.


Department of Physical Chemistry I, University of Bayreuth; free for publication when references are included.

X-ray experiments make the flow behaviour visible

Rod- or plate-like particles flowing through thin capillaries, usually orientate themselves parallel in relation to the flow direction. Should a capillary display a constriction, this alignment does not change until the particles have reached the narrowest location. As soon as the capillary expands again however, the particles align themselves perpendicular to the flow direction, having changed angle. Not only have scientists in Bayreuth, Hamburg, Nijmegen and Göttingen discovered this surprising phenomenon, they have also found an explanation. After establishing theoretical calculations, they were then able to show that within the dilating capillary segment, strong dilating forces appear perpendicular to the flow direction. Such dilating effects a realignment of the particles.

The theoretical calculations were confirmed using micro x-ray experiments at the German Electron Synchrotron (DESY). Here, using modern x-ray optical techniques and the radiation source PETRA III, highly intensive x-rays were produced measuring merely a few micrometers in diameter. By this means it was possible for the first time to observe the streaming behaviour in particularly thin capillaries. The scientists were able to precisely determine the alignment of particles flowing through a constricted capillary. The perpendicular orientation which is taken on after passing the narrowest point remains stable, not changing in the further course of the capillary.

New applications first in the production of high-performance fibres and second with regard to the onset of vascular diseases

The realignment of particles when flowing through narrow points of capillaries is crucial to the understanding of many biological and technical flow processes. One example is the process of spinning, whereby solutions of macromolecules and particles are pressed through fine spinning nozzles. In order to produce fibres characterised by high tear strength and other significant mechanical properties, it is vital that the macromolecules and particles orientate themselves parallel to the flow direction. As recently discovered however, they are aligned perpendicular to the flow direction when leaving the nozzle. This explains why, as has been known for a long time, that spun fibres have to be stretched. This stretching ensures the macromolecules and particles (the fibres’ building blocks) reassume the desired parallel alignment. The findings recently published in the PNAS make it possible to predict the flow orientation of such building blocks and control it precisely by means of an appropriate design of capillaries and nozzles.

A further area of application is in the field of medicine, insofar as cells and proteins flow through very fine blood vessels. When they realign themselves due to vascular stenosis, agglomeration may occur, resulting in thrombosis or vascular occlusion. The international team of researchers have possibly discovered an important subprocess which contributes significantly to the onset of vascular disease.

International research co-operation

Among the authors of this report published in the PNAS are Prof. Stephan Förster and his team from the Physical Chemistry I department as well as Prof. Walter Zimmermann of the Theoretical Physics I department of the University of Bayreuth, Dr. Julian Thiele (Radboud University Nijmegen), Dr. Jan Perlich, Dr. Adeline Buffet and Dr. Stephan V. Roth (DESY, Hamburg), and Dr. Dagmar Steinhauser (Max Planck Institute for Dynamics and Self-Organization, Göttingen, and German Institute of Rubber Technology, Hannover). The project has been realised within the framework of one of the most prestigious funding programmes of the European Union: in 2012, Prof. Stephan Förster was awarded an ERC Advanced Grant. The research received additional funding from the German Ministry of Science and Education (Bundesministerium für Bildung und Forschung, BMBF).

Publication:

Martin Trebbin, Dagmar Steinhauser, Jan Perlich, Adeline Buffet, Stephan V. Roth, Walter Zimmermann, Julian Thiele, Stephan Förster,
Anisotropic particles align perpendicular to the flow-direction in narrow microchannels
in: PNAS (Proceedings of the National Academy of Sciences of the United States of America),
published online before print April 8, 2013;
DOI: 10.1073/pnas.1219340110

Contact for further information:

Prof. Stephan Förster
Department of Physical Chemistry I
University of Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55-2760
E-Mail (secretary): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>