Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parental Conflict in Plants: Maternal Factors Silence Paternal Genes

30.05.2011
In flowering plants, the beginning of embryogenesis is almost exclusively governed by maternal gene activity. Maternal factors regulate the development of the embryo and silence paternal genes during early stages of development.

This finding – obtained using next generation sequencing technology – was reported by an international team of researchers including plant geneticists from the University of Zurich. This newly uncovered mechanism may be involved in the maintenance of species boundaries and could play an important role in the development of novel crop varieties.

Mother and father each contribute one half of the genetic information to their offspring. Thus, it was thought that both parents contribute equally to the development of the next generation. Indeed, this holds true for late stages of embryo development in plants, but early on, things are quite different: during the earliest phase of embryo development - from the fertilized egg to the globular stage - predominantly the maternal genes are active. This phase of development is controlled largely by maternal factors, which actively repress or silence the genes inherited from the father. This surprising finding was recently published in the renowned American journal CELL, by an international team of scientists led by plant geneticists from the Universities of Zurich and Montpellier.

Silenced Paternal Genes

For their analysis, the Zürich scientists crossed two genetically distinguishable races of the model plant Arabidopsis thaliana (tale cress) and analyzed the relative contributions of the parental genomes shortly after the first division of the fertilized egg. Such molecular genetic analyses of plant embryos at very early stages are technically challenging, which explains why up to now researchers resorted to studying embryos at later stages. But Ueli Grossniklaus, Professor for Plant Developmental Genetics at University of Zurich, has a marked preference for tackling experimentally challenging problems, including the study of gametes and very young embryos that are hard to obtain.

Using "Next Generation Sequencing", a novel and powerful technology, Grossniklaus and colleagues were able to show that in an early phase of plant embryo development, predominantly maternal genes are active. Via small ribonucleic acid molecules (siRNAs), the maternal genome controls paternal genes to ensure that, initially, most remain inactive.

In the course of development, paternal genes are sucessively activated, which also requires the activity of maternal factors. This finding is surprising because it contradicts earlier findings, which suggested that these siRNAs have a specifc role in preventing "jumping genes" (transposons) to move within the genome.

According to Grossniklaus, the transient silencing of the paternal contribution during early development of the offspring is in the mother plant’s best interest: the mother invests considerable resources into the formation of seeds. Before making this investment, the mother verifies the paternal contribution to the progeny for compatibility with her own genome. If the father’s genome is too divergent from her own, e.g., originating from a different species, the embryo will die.

In fact, the two parental plants have opposing interests with regard to their offspring. The pollen-donating father is interested in maximizing transfer of resources from the mother to the offspring. By contrast, the mother plant aims at optimizing the match with the fathers genome in order to prevent a waste of resources. „We are dealing with a classical parental conflict“, Ueli Grossniklaus summarizes the opposing interests.

Maternal Control May Ensure the Maintenance of Species Boundaries

Maternally active genes direct and control early embryogenesis. Genetic incompatibility will cause embryos to abort, such that fertilization with pollen from other plant species is not successful. Therefore, the mechanism unraveled by Grossniklaus and colleagues may play an important role in the maintenance of species barriers. This may also explain why attempts to cross crop plants with their wild relatives, e.g., to transfer disease-resistance genes present in wild relatives to crops, often fail early in embryogenesis. A genetic divergence between the parents that is too large may be recognized by this novel mechanism, leading to embryo abortion. Commercial crop breeders will thus be interested in finding out how the maternal control of early plant embryo development can be circumvented in their breeding programs.

Reference:
Daphné Autran, Célia Baroux, Michael T. Raissig, Thomas Lenormand, Michael Wittig, Stefan Grob, Andrea Steimer, Matthias Barann, Ulrich C. Klostermeier, Olivier Leblanc, Jean-Philippe Vielle-Calzada, Philip Rosenstiel, Daniel Grimanelli and Ueli Grossniklaus, Maternal Epigenetic Pathways Control Parental Contributions to Arabidopsis Early Embryogenesis, Cell (2011), doi: 10.1016/j.cell.2011.04014.
Contact:
Prof. Dr. Ueli Grossniklaus, University of Zürich, Institute of Plant Biology, Tel. +41 44 634 82 40

E-Mail: grossnik@botinst.uzh.ch

Beat Müller | idw
Further information:
http://www.mediadesk.uzh

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>