Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paradigm shift in the research field of photoreceptor transplantation

06.10.2016

Paradigm shift in the research field of photoreceptor transplantation: mechanism improving the function of the retina works different than previously assumed

The research group of Prof. Dr. Marius Ader, group leader at the DFG-Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at TU Dresden, introduces a new understanding of the mechanism of cell transplantations that aim to improve retinal function. Affected retinal degenerative diseases are for example age-related macular degeneration (AMD) and Retinitis Pigmentosa (RP) with a current total of approximately 1.6 million patients affected in Germany.


See press release.

© CRTD

Dresden. The study presented here describes a paradigm shift in the research field of photoreceptor transplantation. Photoreceptors comprise the rods and cones in the retina. Whereas rods are responsible for vision in dim light conditions (“night vision”), cones are responsible for daylight vision and color recognition. In case of retinal degenerative diseases, usually the photoreceptors are affected – leading to clinical conditions like age-related macular degeneration (AMD) or Retinitis Pigmentosa (RP).

First AMD symptoms comprise a blurred and distorted perception in the center of the visual field due to dysfunction and loss of cones. This leads to difficulties in the recognition of people and to a loss of the reading ability. AMD is the most common cause for blindness in Germany. On the other hand, RP leads to a gradual reduction of the visual field due to rod photoreceptor dysfunction and death.

The affected patients develop a “tunnel vision” that leads step by step to a complete blindness as cones are finally also lost. The high number of affected patients, with about 5000 new cases of registered blindness every year, emphasizes the relevance of research in this field.

The study introduced here examines the mechanism underlying the rescue of retinal function observed previously in mouse models of retinal degeneration. With respect to the transplantation of photoreceptors, it was assumed that there is a structural integration of donor photoreceptors into the retinal tissue resulting in functional replacement of endogenous photoreceptors (“cell replacement therapy”). The results presented here show that this is not the case.

The donor cells actually remain at the injection site and instead transfer cell material to endogenous photoreceptors of the recipient. This is a new, unexpected mechanism of cell material transfer between donor and recipient photoreceptors and its potential for the development as a therapy needs to be examined in further detail now (“cell support therapy”).

Further studies carried out by Professor Ader and his research team aim to identify the cellular and molecular preconditions for this process. “Our results open up a potential new therapeutic approach for the treatment of retinal degenerations. Donor cells might support remaining but dysfunctional photoreceptors instead of replacing them.”, Professor Ader explains.

Since 2007, Marius Ader is working as a research group leader at the CRTD. From 2003-2007 he worked as a Senior-Postdoctoral Fellow at the Smurfit Institute of Genetics, Trinity College Dublin (Ireland). Between 2000 and 2003 he was active as a postdoctoral fellow at the Universitätsklinikum Hamburg-Eppendorf (UKE) and the Zentrum für Molekulare Neurobiologie Hamburg (ZMNH).

Publication
Santos-Ferreira T*, Llonch S*, Borsch O*, Postel K, Haas J, Ader M. Retinal transplantation of photoreceptors results in donor–host cytoplasmic exchange. Nat. Commun. 7, 13028. doi: 10.1038/ncomms13028 (2016).

Press Contact

Franziska Clauß, M.A.
Press Officer
Phone: +49 351 458 82065
E-Mail: franziska.clauss@crt-dresden.de

Founded in 2006, the DFG Research Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at the TU Dresden has now passed the second phase of the Excellence Initiative which aims to promote top-level research and improve the quality of German universities and research institutions. The goal of the CRTD is to explore the human body's regenerative potential and to develop completely new, regenerative therapies for hitherto incurable diseases. The key areas of research include haematology and immunology, diabetes, neurodegenerative diseases, and bone regeneration. At present, eight professors and ten group leaders are working at the CRTD – integrated into an interdisciplinary network of 87 members at seven different institutions within Dresden. In addition, 21 partners from industry are supporting the network. The synergies in the network allow for a fast translation of results from basic research to clinical applications.

www.crt-dresden.de

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>