Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Panel of 11 genes predicts alcoholism risk, gives new insights into biology of the disease

22.05.2014

A group of 11 genes can successfully predict whether an individual is at increased risk of alcoholism, a research team from the United States and Germany reported Tuesday.

"This powerful panel of just 11 genes successfully identified who has problems with alcohol abuse and who does not in tests in three patient populations on two continents, in two ethnicities and in both genders," said Alexander B. Niculescu III, M.D., Ph.D., principal investigator and associate professor of psychiatry and medical neuroscience at the Indiana University School of Medicine.

The panel of genes is highly accurate in its differentiation of alcoholics from controls at a population level, and less so at an individual level, likely due to the major and variable role environment plays in the development of the disease in each individual, the authors noted. Nevertheless, such a test could identify people who are at higher or lower risk for the disease.

"As alcoholism is a disease that does not exist if the exogenous agent (alcohol) is not consumed, the use of genetic information to inform lifestyle choices could be quite powerful," the authors wrote in the paper, published online Tuesday in the journal Translational Psychiatry

... more about:
»Medicine »NIH »alcohol »alcoholics »genes

"We believe this is the strongest result to date in the field of alcoholism and offers a comprehensive -- though not exhaustive -- window to the genetics and biology of alcoholism," Dr. Niculescu said.

Dr. Niculescu, attending psychiatrist and research and development investigator at the Richard L. Roudebush Veterans Affairs Medical Center in Indianapolis, cautioned that genetic tests indicate risk, not certainty, and that "genes act in the context of environment."

Alcohol is legal, widely available, and subject to advertising and social pressures, he noted; but knowing one has a genetic predisposition to alcohol abuse could encourage behavioral and lifestyle changes.

The researchers incorporated data from a German genome-wide study of alcoholism with data from a variety of other types of research into genetic links to alcoholism using a system called Convergent Functional Genomics. The work produced a group of 135 candidate genes.

The researchers then looked at the overlap between those 135 genes and genes whose expression activity was changed in a mouse model of stress-reactive alcoholism -- research mice that respond to stress by consuming alcohol. The mouse model enables researchers to zero in on key genes that drive behavior without the myriad environmental effects that are present in humans.

The mouse model analysis narrowed the candidates down to the panel of 11 genes and 66 variations of those genes called single-nucleotide polymorphisms.

The researchers then determined that the panel of 11 genes could be used to differentiate between alcoholics and non-alcoholics (controls) in three different research populations for which genetic data and information about alcohol consumption were available: a group of Caucasian subjects and a group of African American subjects from the U.S., and a third group from Germany.

Many of the 11 genes also have been implicated as associated with other neuropsychiatric disorders including cocaine addiction, Parkinson's disease, bipolar disorder, schizophrenia and anxiety -- not too surprising given that basic brain biology is involved, and links between such diseases as alcoholism and bipolar disorder have been known clinically for many years, Dr. Niculescu said.

Some of the genes also suggest possible future routes for treatment and prevention, including genes that play a role in the activities of omega-3 fatty acids, for which there is some evidence of control of alcohol consumption in laboratory tests previously conducted by Dr. Niculescu and collaborators.

Other researchers involved in this work were Daniel Levey, Helen Le-Niculescu, Mikias Ayalew, Nikita Jain, Brigid Kirlin, Rebecca Learman, Evan Winiger, Zachary Rodd and Anantha Shekhar of the Indiana University School of Medicine; Nicholas Schork of The Scripps Research Institute; Josef Frank and Marcella Rietschel of the Central Institute of Mental Health, Mannheim, Germany; Falk Kiefer of Heidelberg University; Norbert Wodarz of the University of Regensburg; Bertram Müller-Myhsok of the Max Planck Institute of Psychiatry; Norbert Dahmen of the University of Mainz; Markus Nöthen of the University of Bonn; Richard Sherva and Lindsay Farrer of Boston University School of Medicine; Andrew Smith and Joel Gelernter of Yale University School of Medicine and Henry Kranzler of the University of Pennsylvania Perelman School of Medicine.

More information about this research can be found at www.neurophenomics.info.

The research was supported by an NIH Directors’ New Innovator Award (1DP2OD007363) and a VA Merit Award (1I01CX000139-01), as well as by NIH grants R01 DA12690, R01 DA12849, R01 AA11330 and R01 AA017535, and by grant FKZ 01GS08152 from the National Genome Research Network of the German Federal Ministry of Education and Research.

Eric Schoch | Eurek Alert!

Further reports about: Medicine NIH alcohol alcoholics genes

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>