Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paint by numbers: Algorithm reconstructs processes from individual images

07.09.2017

Researchers at the Helmholtz Zentrum München have developed a new method for reconstructing continuous biological processes, such as disease progression, using image data. The study was published in ‘Nature Communications’.

Modern life sciences generate a constantly growing amount of data in shorter and shorter cycles. Making such data controllable and suitable for evaluation is the objective of Dr. Dr. Alexander Wolf and his colleagues at the Helmholtz Zentrum München’s Institute of Computational Biology (ICB). With this in mind, the researchers are attempting to develop software that handles this evaluation. But of course there are various hurdles to clear.


The new method is able to reconstruct biological processes using image data.

Source: Helmholtz Zentrum München

“In the current study, we dealt with the problem that software cannot assign image data to continuous processes,” explains study leader Wolf. “For example, it is possible to classify image information according to clearly defined categories, but in disease progression and developmental biology, the limits are quickly reached because the processes are continuous and not individual steps.”

In order to take this into account, the Helmholtz team employed methods from so-called Deep Learning* (i.e. machine learning processes). “Using artificial neural networks, we can now combine individual pictures into processes and additionally display them in a way that humans understand,” say Philipp Eulenberg and Niklas Köhler, former Master’s students at the ICB and the study’s first authors.

Blood cells and retinas as sparring partners

In order to demonstrate the method’s capability, the scientists selected two examples. In the first approach, the software reconstructed the continuous cell cycle of white blood cells using images from an imaging flow cytometer (producing pictures in a fluorescence microscope). “A further advantage of this examination is that our software is so fast that it is possible to extract the cell development on the fly, meaning while the analysis in the cytometer is still running,” explains Wolf. “In addition, our software makes six times less errors than previous approaches.”

In the second experiment, the researchers reconstructed the progress of diabetic retinopathy.** “We did this by feeding our software 30,000 individual images of retinas as sparring partners, so to speak,” explains Niklas Köhler. “Since it automatically compiles these data into a continuous process, the software allows us to predict the disease progression on a continuous scale.”

And if the data are not part of a continuous biological process? “In such a case, the software recognizes that individual categories are involved and assigns the measured data to individual clusters,” Wolf explains. In addition to further applications for the method, in the future Wolf and his colleagues want to solve other problems involving the evaluation of biological data using machine learning.


Further Information

* Deep Learning algorithms simulate the learning processes in people using artificial neural networks. The principle functions particularly well when large quantities of data (Big Data) are available for training. Image recognition is one of Deep Learning's strengths. More decision layers are placed between the input and the output than usually found in neuronal networks, which is why the term "deep" is used.

** Diabetic retinopathy is the main cause of early vision loss in the Western world. The diagnosis is usually made by an expert, who assigns it to one of the four stages healthy, mild, medium and severe. Working with 8,000 images, the software was able to describe the progression or increasing severity of the disease without being provided with the ordering information.

Background:
Alex Wolf and the team recently took one of the top places in the Data Science Bowl, one of the world’s highest endowed competitions in Big Data. For their entry, the team programmed an algorithm that recognizes lung cancer on the basis of 300 slices from a three-dimensional computer tomography scan in less than a few milliseconds, a process that can take a radiologist several hours in the worst case.

The ICB also deals with the subject of Deep Learning in other contents: The scientists recently introduced an algorithm in ‘Nature Methods’ that predicts hematopoietic stem cell development. https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas... In the video “Deep Learning Predicts Stem Cell Development”, they explain how this works. https://www.youtube.com/watch?v=nZ46-fi8OF4&feature=youtu.be

Original Publication:
Eulenberg, P. et al. (2017): Reconstructing cell cycle and disease progression using deep learning. Nature Communications, DOI: 10.1038/s41467-017-00623-3
https://www.nature.com/articles/s41467-017-00623-3

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Institute of Computational Biology (ICB) develops and applies methods for the model-based description of biological systems, using a data-driven approach by integrating information on multiple scales ranging from single-cell time series to large-scale omics. Given the fast technological advances in molecular biology, the aim is to provide and collaboratively apply innovative tools with experimental groups in order to jointly advance the understanding and treatment of common human diseases. http://www.helmholtz-muenchen.de/icb

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact:
Dr. Dr. Alexander Wolf, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 4217, E-mail: alex.wolf@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>