Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen-Deprived Baby Rats Fare Worse If Kept Warm

14.02.2012
Article is published in the American Journal of Physiology—Regulatory, Integrative, and Comparative Physiology

Premature infants’ immature lungs and frequent dips in blood pressure make them especially vulnerable to a condition called hypoxia in which their tissues don’t receive enough oxygen, sometimes leading to permanent brain damage. New animal research suggests that a common practice in caring for these babies might in fact exacerbate this condition, increasing the chances for long-term neurological deficits.

A new study shows that rat pups exposed to low oxygen for up to three hours, but kept warm, have changes in insulin and glucose regulation that lead to hypoglycemia. Those allowed to spontaneously cool, a natural response to decreased oxygen in the blood, kept their glucose and insulin values more stable over time. The findings suggest that cooling premature infants who have undergone oxygen deprivation, rather than placing them in incubators or under warmers, could help stave off brain damage associated with this condition.

The article is entitled “Effects of Body Temperature Maintenance of Glucose, Insulin, and Corticosterone Responses to Acute Hypoxia in the Neonatal Rat.” It appears in the American Journal of Physiology – Regulatory, Integrative, and Comparative Physiology, published by the American Physiological Society.

Methodology
The researchers worked with rats that were either two days old or eight days old. Since rats are born at an earlier developmental stage than humans, these ages were chosen to be analogous to critical periods of human neurological development when premature infants might be especially vulnerable to oxygen deprivation. Litters of pups of either age were separated into three groups: One breathed room air with normal levels of oxygen and was kept warm at normal body temperature with a heating pad; one was exposed to air with about a third of typical oxygen levels and allowed to spontaneously cool; and a third was exposed to low-oxygen air, but kept warm at normal body temperature. Over the course of a three-hour period, the researchers monitored the pups for levels of glucose, insulin, and other proteins and hormones in the bloodstream.

Results

The researchers found that the younger pups exposed to hypoxia and heat had dramatic spikes and dips in insulin over the three-hour period, with insulin quadrupling over the first hour, then falling dramatically by the third. In the older animals, glucose rose over the first hour, then fell significantly below baseline by the third. Though hypoxia alone caused significant changes in glucose and insulin concentrations in both younger and older animals, these effects weren’t as pronounced.

Importance of the Findings

These findings suggest that keeping the animals warm may encourage swings in blood sugar that increase metabolic and physiologic demands and decrease the amount of glucose available to tissues. In rats, and perhaps in premature babies as well, this effect could lead to a variety of problems, including neurological damage. The authors note that, to their knowledge, there are no specific guidelines that address body temperature management for human premature babies with hypoxia. “We hope that our studies in the neonatal rat will translate to appropriate studies and guidelines for the control of body temperature in the hypoxic newborn,” the authors say.

Study Team

The study was conducted by Hershel Raff, Eric D. Bruder, and Mitchell A. Guenther of Aurora St. Luke’s Medical Center and the Medical College of Wisconsin, Milwaukee, Wis.
NOTE TO EDITORS: The study is available online at http://bit.ly/ykfZu5. To request an interview with a member of the research team, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS; www.the-APS.org/press) has been an integral part of the discovery process for 125 years. To keep up with the science, follow @Phyziochick on Twitter.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>