Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our circadian clock sets the rhythm for our cells’ powerhouses

06.03.2018

Cellular energy metabolism also follows the rhythm of the circadian clock. A University of Basel study has now shown exactly how this works by revealing the relationship between the circadian rhythm and the mitochondrial network for the first time.

Countless genetically controlled clocks tick inside different parts of our bodies, such as the liver, kidneys and heart. Among other things, they initiate many metabolic processes, ensuring that these occur at the optimal time of day.


The circadian rhythm of roughly 24 hours affects the energy metabolism of mitochondria.

Illustration: University of Basel

Mitochondria – small organelles that exist in almost all our cells and supply them with energy – play an important role in these cellular processes. Until now, it was unclear how exactly the 24-hour circadian rhythm regulated energy metabolism.

Fission protein sets the rhythm

In most cells, mitochondria connect in a constantly changing network that can adapt to various conditions. Mitochondria can thus fuse together and then divide again. Disruption of this fission-fusion dynamic can lead to health problems.

Researchers have now investigated exactly how the mitochondrial network interacts with our internal biological clock by using a combination of in vitro models and clock-deficient mice or mice with impaired mitochondrial fission.

Their results show that the mitochondrial fission-fusion cycle is controlled by the fission protein Drp1, which is in turn synchronized by an internal biological clock. This rhythm is integral to determining when and how much energy the mitochondria can supply.

“The time of day determines the design of the mitochondrial network, and this, in turn, influences the cells’ energy capacity,” explains study leader Professor Anne Eckert from the University of Basel’s Transfaculty Research Platform Molecular and Cognitive Neurosciences MCN.

Relationship between circadian clock and energy production

The researchers also showed that the mitochondrial network loses its rhythm if the circadian clock is impaired, which causes a decline in energy production in the cells.

Similarly, pharmacologically or genetically impairing the Drp1 fission protein upsets the energy production rhythm, which in turn affects the rhythm of the circadian clock.

These findings could play a role in the development of new therapeutic approaches; for example, for diseases that are characterized by an impaired circadian clock and compromised mitochondrial function, such as Alzheimer’s.

The study was published in the journal Cell Metabolism and involved researchers from the University of Basel, University of Zurich and University Psychiatric Clinics Basel (UPK Basel).

Original source

Karen Schmitt, Amandine Grimm, Robert Dallmann, Bjoern Oettinghaus, Lisa Michelle Restelli, Melissa Witzig, Naotada Ishihara, Katsuyoshi Mihara, Jürgen A. Ripperger, Urs Albrecht, Stephan Frank, Steven A. Brown, Anne Eckert
Circadian Control of DRP1 Activity Regulates Mitochondrial Dynamics and Bioenergetics
Cell Metabolism (2018), doi: 10.1016/j.cmet.2018.01.011

Further information

Prof. Dr. Anne Eckert, University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences / University Psychiatric Clinics Basel (UPK Basel), tel. +41 61 325 5487, e-mail: anne.eckert@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Our-circadian-clock-sets-...

Cornelia Niggli | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>