Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origin of root offshoots revealed - possible basis for new ecological agricultural applications

24.10.2008
VIB researchers at Ghent University have discovered the substance that governs the formation of root offshoots in plants, and how it works. Root offshoots are vitally important for plants – and for farmers.

Plants draw the necessary nutrients from the soil through their roots. Because they do this best with a well-branched root system, plants must form offshoots of their roots at the right moment. The VIB researchers describe how this process is controlled in the prominent professional journal Science.

A key player in this process is a protein called ACR4. Depending on the signals that it receives from its environment, this protein triggers the formation of a root offshoot. Now that we know the control mechanism, we can begin to stimulate plant roots to form more, or fewer, offshoots. This can lead to a more ecological agriculture and to the production of better crops at the same time.

An efficient network
It is difficult to overstate the importance of plants in our lives - they are responsible for our oxygen and for food, clothing, energy, and countless other things. And in turn, the importance of a plant’s roots is unquestionable: they provide the plant with necessary nutrients and moisture. The more the roots are subdivided, in breadth and depth, the better they can do their work. So, a well-coordinated, controlled formation of root offshoots is crucial to a plant. But, until now, how a plant determines when and where an offshoot should be formed was unknown.
Asymmetric cell division
The presence of stem cells is very important in the development of plants and animals. Stem cells are cells that can transform themselves into various types of cells. In animals, tissues and organs are formed before birth; but in fully-grown plants, stem cells continue to play a major role in the formation of new organs or tissues, such as root offshoots.

These stem cells are found inside the root, and several of them will induce the formation of an offshoot. These ‘root-founder’ cells undergo an asymmetric cell division. In contrast to the usual cell division, which gives rise to two identical cells, asymmetric cell division produces two different cells: a stem cell that is identical to the original cell, and a cell that is ready to become a specialized cell – in this case, a secondary root cell.

The decisive signal
With the aid of the mouse-ear cress (Arabidopsis thaliana), a frequently used model plant, Ive De Smet and Valya Vassileva in Tom Beeckman’s group have been studying how a plant determines which cells will trigger offshoots. To do this, the VIB researchers in Ghent have employed a special technology that makes it possible to make synchronous offshoots develop at different moments. This allowed them to isolate the cells that induce the formation of offshoots. They found out which genes are active in these cells and compared them with the genes that are crucial to normal cell division. In this way, the researchers identified a specific set of genes that control asymmetric cell division and send the signal for the formation of offshoots.
ACR4: control over asymmetric division
The researchers then examined one of these genes more closely. The ACR4 gene contains the DNA code for a receptor, a protein that is often located on the exterior of a cell to pick up signals from the outside and transmit them to the controlling mechanisms within the cell. When the researchers disrupted the function of ACR4 in plant cells, the precisely orchestrated asymmetric cell division was also disturbed. From this finding, De Smet and Vassileva inferred that ACR4 plays a key role in the creation of offshoots. Because the protein has a receptor function, triggering the formation of offshoots depends on its reaction to signals from the environment.
Desired or undesired
With this research, the scientists have discovered a fundamental mechanism - fundamental for the plant, and very important for plant-breeders as well. This new knowledge enables us to promote, or retard, the formation of offshoots - both activities are useful in a large number of applications.
Promoting an extensive root system helps plants absorb nutrients more readily, and thus they need less fertilizer. Such plants can also grow more easily in dry or infertile soils. Furthermore, plants with a well-developed root system are more firmly anchored in the soil and can be used to counteract erosion.

On the other hand, slowing down secondary root formation can be advantageous in tuberous plants, like potatoes or sugar beets. This enables these food crops to invest all their energy in the production of nutrients. Fewer root offshoots also makes it easier for farmers to harvest these crops.

Plant research with medical possibilities?
This plant research sheds light on the control of asymmetric cell division - and this kind of cell division is similar to the cell division of stem cells in animals, too. So, these results can also provide greater insight into how animal stem cells specialize.

For example, irregular cell division plays a role in the development of various types of cancer, and similar control mechanisms might underlie this process as well. This is clearly an important area for future research.

Sooike Stoops | alfa
Further information:
http://www.vib.be

Further reports about: ACR4 Asymmetric cell division Control DNA code VIB asymmetric food crop formation nutrients play root system stem cells

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>