Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orangutans harbor ancient primate Alu

30.04.2012
Alu elements infiltrated the ancestral primate genome about 65 million years ago.

Once gained an Alu element is rarely lost so comparison of Alu between species can be used to map primate evolution and diversity. New research published in BioMed Central's open access journal Mobile DNA has found a single Alu, which appears to be an ancestral great ape Alu, that has uniquely multiplied within the orangutan genome.

Analysis of DNA sequences has found over a million Alu elements within each primate genome, many of which are species specific: 5,000 are unique to humans, while 2,300 others are exclusive to chimpanzees. In contrast the orangutan lineage (Sumatran and Bornean orangutans) only has 250 specific Alu.

These tiny pieces of mobile DNA are able to copy themselves using a method similar to retroviruses. But, because this is an inexact process, a segment of 'host' DNA is duplicated at the Alu insertion sites and these footprints, known as 'target site duplications', can be used to 'identify' Alu insertions. Alu elements can be thought of as molecular fossils, and a shared Alu element sequence and location within the genome indicates a common ancestor.

Researchers from Louisiana State University, in collaboration with the Zoological Society of San Diego and the Institute of Systems Biology in Seattle, found a single Alu which is present in great apes, but absent from gibbons and siamang, and so was likely acquired after ancestors of these species diverged. This founder Alu element was found in an intron (non-coding DNA) on chromosome 7.

Subsequent copying of this Alu, visible as insertions into chromosomes 4, 17, and 12, are unique to orangutans, suggesting that the founder Alu inserted before orangutans separated from other members of the Hominidae (humans, gorillas, and chimpanzees). The Sumatran orangutan also has a copy of this Alu in chromosome 13, and has gained a daughter Alu, which rapidly expanded into chromosomes 21, 2b, and 17. These extra insertions are able to pinpoint the divergence of Sumatran and Bornean orangutans.

The ancestral Alu has been much less active in other great apes, but can still provide information about speciation. While still on chromosome 7 the Alu gained three mutations which can be traced to before the split of gorillas with humans and chimpanzees. It subsequently copied itself into chromosome 3 of humans, indicating that this must have occurred after humans split from bonobos and chimpanzees.

Prof Batzer, who led this research along with Jerilyn Walker and Miriam Konkel, explained "Despite otherwise low activity of Alu retrotransposition in orangutans, this ancestral Alu, still present on chromosome 7, has duplicated more rapidly in orangutans than other Hominidae and likely served as an ancient backseat driver that contributed to the recent orangutan-specific expansion of the Alu family."

Media Contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. Orangutan Alu Quiescence Reveals Possible Source Element: Support for Ancient Backseat Drivers Jerilyn A Walker, Miriam K Konkel, Brygg Ullmer, Christopher P Monceaux, Oliver A Ryder, Robert Hubley, Arian F A Smit and Mark A Batzer Mobile DNA (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Human skin is an important source of ammonia emissions
27.05.2020 | Max-Planck-Institut für Chemie

nachricht Biotechnology: Triggered by light, a novel way to switch on an enzyme
27.05.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>