Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optoelectronic interface for stimulating neural networks in the brain

23.10.2018

Lobachevsky University scientists, together with colleagues from the Technical University of Madrid (Spain), have first proposed and developed an optoelectronic interface for the interaction of electronic neuron-like generators with live brain neurons

In the past few decades, research aimed at finding approaches to restoring brain function has increased exponentially. An interdisciplinary approach to the task of brain function restoration combines complementary approaches and methods of regenerative medicine, on the one hand, and those proposed by neuroengineering, on the other.


This is a schematic illustration of an optoelectronic device during the stimulation of synaptic transmission in the mouse hippocampus section.

Credit: Lobachevsky University

Biological approaches are based on activating the regenerative capacity of the brain and on cell transplantation, whereas engineering strategies include methods of neuromodulation, creating replacement or bridge neuroprostheses or developing brain-machine interfaces. The engineering approach is to create a biohybrid architecture that somehow connects the artificial control device with the brain: it hinders neuronal activity or, on the contrary, initiates this activity.

According to Svetlana Gerasimova, junior researcher at the Physics and Technology Research Institute and at the Neurotechnology Department of Lobachevsky University (Nizhny Novgorod, Russia), Russian scientists together with their colleagues from the Technical University of Madrid (Spain) have first proposed and developed an optoelectronic interface for the interaction of electronic neuron-like generators and living neurons of the brain (Fig.1).

"The designed interface differs from the existing methods of acting on brain neurons: it uses a fiber-optic channel to transmit signals from an artificial electronic neuron to a live one (Fig. 2). At the same time, unlike in the known optogenetics methods, there is no need to perform technically difficult and expensive genetic modifications of neurons for stimulation. Stimulation of living neurons is carried out with the help of an electrical signal obtained using photoelectric conversion at the output of the optical fiber," Svetlana Gerasimova says.

Mikhail Mishchenko, researcher at the Department of Oscillation Theory and Automatic Control of the UNN Faculty of Radiophysics, notes that the main advantage of using optical fiber instead of traditional metal wires is galvanic isolation, which rules out the possibility of electrical damage to brain tissue due to breakdown or electromagnetic effects.

"Besides, optical fiber provides another important advantage: the effectiveness of the interface in terms of affecting brain neurons can be increased by using an active optical fiber instead of a passive one. Thus, adaptive stimulation will be possible and its effectiveness will depend on the current state of the fiber optic channel, which reproduces the effects of synaptic plasticity," concludes Mikhail Mishchenko.

The effectiveness of the proposed system in stimulating the electrophysiological activity of neurons in a surviving section of the hippocampus has been demonstrated. It can be used to develop adaptive systems for restoring brain activity or replacing individual parts of the brain affected by an injury or a neurodegenerative disease.

Media Contact

Nikita Avralev
pr@unn.ru

http://www.unn.ru/eng/ 

Nikita Avralev | EurekAlert!

More articles from Life Sciences:

nachricht Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system
20.09.2019 | Technische Universität München

nachricht Moderately Common Plants Show Highest Relative Losses
20.09.2019 | Universität Rostock

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>