Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimizing Microbe Factories

10.07.2013
Max Planck and Fraunhofer scientists team up to develop efficient biosynthetic processes for the production of pharmaceutical and industrial ingredients.

A joint research project of the Max Planck and Fraunhofer Societies has received substantial financial support enabling scientists to open the door for new discoveries with immediate industrial applications.


Model plant Arabidopsis thaliana in a tube.
Marion Rehers / Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)

In the next three years, researchers from the Fraunhofer Institute for Molecular Biology and Applied Ecology, Aachen, and the Max Planck Institute for Chemical Ecology, Jena, will join forces for a common project: the optimization of the MEP pathway. Microbes and plant chloroplasts use this metabolic route to produce a diversity of active compounds including many substances humans have been employing as pharmaceuticals, crop protection compounds and industrial materials for thousands of years.

However, the purification or chemical synthesis of these compounds requires extensive efforts. Therefore the goal of the joint project is to utilize bacteria with an optimized MEP pathway to improve the biosynthetic yield of various natural products.

Close relatives: chloroplasts and prokaryotes

The Fraunhofer / Max Planck cooperation is actually based on a natural event that most likely occurred many millions of years ago: In the course of evolution protozoa absorbed other unicellular organisms, such as ancestors of prokaryotic cyanobacteria. According to this theory, the result of this “endosymbiosis” is the development of plants; the cells of all our plant species contain chloroplasts that emerged from ancestral cyanobacteria and still have substantial similarities to free-living prokaryotes.

A few years ago, plant scientists discovered that chloroplasts contain a metabolic pathway which is also found in prokaryotes such as bacteria, that leads to the production of many so-called terpenoid metabolites: the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway, a finding which confirmed the endosymbiont theory. Intermediates of glycolysis are used in the pathway for the multistep synthesis of molecular monomers that consist of five carbon atoms each. These five carbon units can then be combined in many different ways in order to form chlorophyll, carotenoids, cytokinins, sterols and a multitude of other terpenoids. The production of some plant toxins used as defenses against pests is also based on the MEP biosynthetic pathway.

Vitamins and aromas, pharmaceuticals and plant protection compounds: The production of many valuable natural substances is still difficult and expensive.

The discovery of many biologically-active substances in plants and bacteria has proven beneficial to mankind. However, their isolation, purification and processing from natural sources is not only extremely laborious, but also expensive. Chemical synthesis is also difficult or even impossible because these substances usually have complex carbon skeletons that are hard to make in pure forms. For example, the purification of the elementary substance isoprene from mineral oil − a process which is still commonly used today − is neither environmentally friendly, nor economically sustainable. Stefan Jennewein, a scientist at the Fraunhofer Institute for Molecular Biology and Applied Ecology, as well as Louwrance Wright and Jonathan Gershenzon from the Max Planck Institute for Chemical Ecology therefore decided to study the MEP pathway, a metabolic pathway involved in the biosynthesis of the isoprene units, in more detail. They aim to manipulate this pathway in a way that will facilitate a more efficient production of the pharmaceutically relevant substances by using metabolically modified bacteria. The Max Planck scientists will study the regulation of the MEP pathway in chloroplasts of the model plant Arabidopsis thaliana to learn the principles of metabolic control, whereas Stefan Jennewein’s part is to create bacterial strains of the species Escherichia coli and Clostridium ljungdahlii which will be able to produce the required substances in high yield once their MEP pathways have been optimized.

Optimized MEP pathway: better yield, better quality

Thanks to a 1.6 million EUR funding for both institutes in the next three years, the regulation of the seven consecutive enzymatic steps, the levels of the metabolic intermediates, and the transcription of the corresponding genes will be studied. The scientists will use transgenic plants and bacteria in which selected enzymes will be either silenced or overexpressed in order to study potential key roles of particular biosynthetic steps compared to those in untransformed organisms. The researchers also plan to transfer alternative or additional genes to the two bacterial species Escherichia coli and Clostridium ljungdahlii. Applied in high-volume fermenters, MEP pathway-optimized microorganisms should be able to produce higher quantities of the desired substances.

MEP pathway-optimized bacteria are also interesting for their use in chemical industries, especially in the context of processing so-called syngases. Syngas is a mixture of carbon dioxide, carbon monoxide and hydrogen that often accumulates in power plants and steel mills. MEP pathway-optimized Clostridium bacteria with a more efficient isoprene synthase could metabolize these three gases and form isoprene, which may be used to produce a special rubber. Alternatively, syngas could be an intermediate for the production of biofuels. Such a bacteria-based process would be superior to the conventional Fischer-Tropsch synthesis because unpurified syngas could be applied to the fermenters. The Fischer-Tropsch process, on the other hand, which is based on metal catalysis, requires highly purified syngas, and furthermore is highly energy consuming.

Drugs against malaria and cancer

The elucidation of the crucial regulatory steps of the MEP pathway may eventually contribute to the development and production of pharmaceuticals in human medicine, for example against cancer or malaria. The anti-cancer drug taxol and artemisinin, used for the treatment of malaria, could be produced by bacteria whose MEP pathway has been successfully modified. [JWK/AO]

Further information:

Prof. Dr. Jonathan Gershenzon, MPI for Chemical Ecology, gershenzon@ice.mpg.de, +49 3641 57 1301

Dr. Stefan Jennewein, Fraunhofer Institut für Molekularbiologie und Angewandte Ökologie, stefan.jennewein@ime.fraunhofer.de, +49 241 6085 12120

Contact and picture requests:

Angela Overmeyer M.A., Tel. 03641 - 57 2110, overmeyer@ice.mpg.de
or Download via http://www.ice.mpg.de/ext/735.html

Angela Overmeyer | idw
Further information:
http://www.ice.mpg.de/ext/1036.html?&L=0

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>