Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opportunity to Usurp Reproductive Power of Royal Throne Keeps Worker Termites Home

07.10.2009
A new study by researchers at the University of Maryland suggests termite offspring stay in their birth colony to help their queen and king parents rather than leave to try and start their own family because their chance of inheriting the ‘reproductive throne’ is higher than their chance of successfully dispersing, finding a mate, and surviving to produce fertile offspring on their own.

In research published in the Proceedings of the National Academy of Sciences Early Edition (October 5, 2009), Professor Barbara L. Thorne and colleagues reveal how unrelated termites originating from two different families or colonies join forces after the death of their kings and queens, and then cooperate in a larger, stronger group in which new “reproductives” can emerge from the worker ranks of either or both original colonies, thus enabling both lineages to thrive.

"When young dampwood termite colonies nest in the same piece of wood, their interactions result in assassination and cannibalism of one or both sets of queens and kings followed by fusion of the two families into a single colony,” said Thorne.

These findings help unravel an evolutionary mystery that Charles Darwin himself recognized as a special problem to reconcile with fundamental concepts of natural selection. The majority of individuals in a termite (or ant, bee, or wasp) colony are “workers” who stay to help out in their parents’ colony their entire lives, but never reproduce. Why would natural selection (“survival of the fittest”) favor traits that reduce reproductive success? This research shows that unrelated families both benefit following colony encounters and that competition among families living within limited food and nesting resources played a prominent role in the evolution of the complex social structure in termites.

For this study, Thorne and her colleagues Philip Johns and Ken Howard, now at Bard College, and Nancy Breisch and Anahi Rivera at the University of Maryland, staged meetings between unrelated dampwood termite colonies (from the Termopsidae family) that mimicked natural meetings that occur under wood bark, and analyzed genetic markers.

These termites are members of the genus Zootermopsis, and share social, developmental, and habitat characteristics with ancient ancestors. They thus serve as a model system to draw inferences regarding how highly social behavior evolved in these insects 140 million years ago.

Termite colonies begin as a nuclear family: the queen, the king, and their offspring (workers and soldiers). Although most termite workers never reproduce, if either or both of the original parents die, one or more of their offspring can become a ‘replacement reproductive’ to carry on (usually incestuous) reproduction and growth of the colony. When young dampwood termite colonies nest in the same piece of wood, the neighbors meet and the two families merge into a single colony after a violent process during which one or both sets of queens and kings may be killed and eaten.

After the carnage, worker offspring may usurp the throne and the reproductive power and resources that go with it. Despite the original colonies being unrelated, individuals within the merged colony cooperate. This cooperation is best explained by the key finding of this paper, revealed through analysis of genetic markers: offspring in both original colonies have opportunities to develop into new (replacement) reproductives within the larger, merged colony, and termites from the two families may even interbreed. Thus both lineages (i.e. both original, unrelated families or young colonies) can ‘win’ and propagate in this dynamic.

Data in this PNAS paper add genetic evidence to support a theory that Thorne and her lab first proposed in a 2003 PNAS paper– the theory of “Accelerated Inheritance” to explain the evolution of highly social behavior and nonreproductive castes in termites.

The paper “Nonrelatives inherit colony resources in a primitive termite” was written by Philip M. Johns, Kenneth J. Howard, Nancy L. Breisch, Anahi Rivera, and Barbara L. Thorne. This research was supported by a National Science Foundation grant to Barbara L. Thorne, Department of Entomology, College of Chemical & Life Sciences, University of Maryland, College Park, Maryland.

Kelly Blake | Newswise Science News
Further information:
http://www.umd.edu
http://www.terp.umd.edu/

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>