Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening a new window

09.12.2011
Water is opaque for wavelengths longer than 1300 nm limiting the optical spectroscopy of biological specimen. Yet, a local minimum of water absorption between 1600 nm and 1850 nm opens up a window for bond-selective deep tissue imaging such as mapping of atherosclerotic plaques.

A variety of advanced techniques have been developed to characterize the atherosclerotic plaque, including multidetector spiral computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherent tomography and intravascular near infrared spectroscopy.


Pu Wang and his colleagues from Purdue University, West Lafayette, and Indiana University School of Medicine (USA) now developed a promising new one: They employ an optical window between 1600 nm and 1850 nm for bond-selective deep tissue imaging. Label-free imaging of atherosclerotic plaques can be performed through optical excitation of first overtones of CH bonds and acoustic detection of the generated ultrasound waves in this previously underappreciated optical window.

Until now, the consensus was that the gold optical window lies between 650 and 1300 nm and that it stops at 1300 nm due to significant water absorption at longer wavelengths. The scientists noted that water absorption in the region beyond 1300 nm is modulated by the vibration transition of H2O: They observed a significant valley between 1600 and 1850 nm, where the absorption coefficient of pure water is at the same level as that of heme proteins in whole blood around 800 nm.

Considering the reduced scattering and diminished phototoxicity at longer wavelength excitation, the wavelength region from 1600 to 1850 nm is appealing as a new optical window for deep tissue imaging (light red shadow region). Importantly, the first overtone of CH vibration is located at the same window. Using this new window to carry out photoacoustic imaging, the scientists found a 5 times enhancement of photoacoustic signal by first overtone excitation of the methylene group CH2 at 1730 nm, compared to the second overtone excitation at 1210 nm.

This enhancement allowed 3D mapping of intramuscular fat with improved contrast and of lipid deposition inside an atherosclerotic artery wall in the presence of blood. Moreover, lipid and protein could be differentiated based on the first overtone absorption profiles of CH2 and methyl group CH3 in this window.

Selective vibrational photoacoustic microscopy imaging of collagen and lipids heralds the potential in diagnosis of vulnerable plaques through detection of the thickness of the collagen cap and the location of the lipid-laden plaque inside the arterial wall without molecular labeling that could alter tissue composition. (Text contributed by K. Maedefessel-Herrmann)

P. Wang et al., J. Biophotonics 5(1), 25-32 (2012), http://dx.doi.org/10.1002/jbio.201100102

J. Biophotonics, Volume 5, Issue 11 (2012)

Journal of Biophotonics publishes cutting edge research on interactions between light and biological material. The journal is highly interdisciplinary, covering research in the fields of physics, chemistry, biology and medicine. The scope extends from basic research to clinical applications. Connecting scientists who try to understand basic biological processes using light as a diagnostic and therapeutic tool, the journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for diagnosis of diseases. JBP offers fast publication times: down to 20 days from acceptance to publication. Latest Journal Impact Factor (2010): 4.240 (ISI Journal Citation Reports 2010)

Regina Hagen | Wiley-VCH Verlag GmbH & Co. KGaA
Further information:
http://www.biophotonics-journal.com
http://dx.doi.org/10.1002/jbio.201100102

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>