Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One-two punch catches cancer cells in vulnerable state

11.02.2015

Transition state may offer important window of time for treatment.

Timing may be decisive when it comes to overcoming cancer's ability to evade treatment. By hitting breast cancer cells with a targeted therapeutic immediately after chemotherapy, researchers from Brigham and Women's Hospital (BWH) were able to target cancer cells during a transitional stage when they were most vulnerable, killing cells and shrinking tumors in the lab and in pre-clinical models. The team reports its findings in Nature Communications on February 11.


This confocal microscopy image depicts drug-tolerant cancer cells. By hitting breast cancer cells with a targeted therapeutic immediately after chemotherapy, researchers were able to target cancer cells during a transitional stage when they were most vulnerable.

Credit: Image courtesy of Aaron Goldman

"We were studying the fundamentals of how resistance develops and looking to understand what drives relapse. What we found is a new paradigm for thinking about chemotherapy," said senior author Shiladitya Sengupta, PhD, associate bioengineer at BWH.

Previous studies have examined cancer stem cells (CSCs) - small populations of cells within a tumor that are resistant to chemotherapy. Sengupta and his colleagues took breast cancer cells that did not have the markings of CSCs and exposed them to docetaxel, a common chemotherapy drug.

The team found that after exposure to chemotherapy, the cells began developing physical markings usually seen in CSCs, including receptors on the cell surface to which specific proteins can bind. These "markers of stemness" suggested that the cells were transitioning into a different state, during which time they might be vulnerable to other cancer drugs.

To test this, the researchers treated the cells with a variety of targeted therapeutics immediately after chemotherapy. The researchers observed that two drugs each killed a large fraction of the cells that had begun transitioning: dasatinib, a drug that targets the Src Family Kinase (SFK) and RK20449, a new drug in pre-clinical testing that specifically targets one of the SFK proteins called Hck.

The researchers confirmed these findings in a mammary carcinoma mouse model - treatment with dasatinib just a few days after administering two high doses of chemotherapy prevented tumor growth and increased survival rates.

Treating cells simultaneously with docetaxal and dasatinib or administering dasatinib after a longer period of time did not produce the same effects. The researchers theorize that the cancer cells go through a temporary transition state, which means that administering the drugs in a very specific timeframe and sequence is important.

"By treating with chemotherapy, we're driving cells through a transition state and creating vulnerabilities," said first author Aaron Goldman, PhD, a postdoctoral fellow in biomedical engineering at BWH. "This opens up the door: we can then try out different combinations and regimens to find the most effective way to kill the cells and inhibit tumor growth."

To make these observations, the researchers developed and leveraged three-dimensional "explants" - tissue derived from a patient's tumor biopsy and grown in serum from that specific patient for research purposes. This model mimics the tumor's microenvironment and preserves the tumor's cellular diversity.

In a continuation of this work, Goldman is also using mathematical modeling to pursue the most effective dose of chemotherapy to induce the vulnerable transition state of the cancer cell demonstrated in this research.

"Our goal is to build a regimen that will be efficacious for clinical trials," said Goldman. "Once we understand specific timing, sequence of drug delivery and dosage better, it will be easier to translate these findings clinically."

 ###

This work was supported by a DoD BCRP Collaborative Innovator Grant (W81XWH-09-1-0700), NIH RO1 (1R01CA135242), DoD Breakthrough Award (BC132168), an American Lung Association Innovation Award (LCD-259932-N), Indo-US Joint Center Grant from IUSSTF, American Cancer Society Postdoctoral Fellowship and NSERC, Canada.

Haley Bridger | EurekAlert!

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>