One cell's meat is another cell's poison

The loss of JAK2 is advantageous for leukemia cells. Illustration: Sabine Fajmann / Vetmeduni Vienna

The protein JAK2 is of special therapeutic significance: its inactivation is believed to destroy cancer cells. However, the effect of JAK2 inhibition on healthy blood stem cells is so far unknown.

Scientists at the Vetmeduni Vienna show that the loss of JAK2 in the mouse causes healthy blood stem cells to disappear while cancer cells preserve their growth potential. Future studies will address the question as to whether these data can be passed on to treatment in humans. The results were published in the journal Leukemia.

As a new therapeutic approach, Janus kinases are currently in the limelight of cancer research. The focus of interest is the protein JAK2. By inhibiting this protein one tries to cure chronic bone marrow diseases, such as myelofibrosis and chronic myeloid leukemia (CML).

Loss of JAK2 is advantageous for leukemia cells

Scientists working with Veronika Sexl at the Institute of Pharmacology and Toxicology may initiate a transformation of thought in regard of JAK2 inhibition. To simulate the human disease as accurately as possible, the scientists used a mouse leukemia model. In an experiment, mice received blood cancer cells as well as healthy hematopoietic stem cells in which JAK2 had been removed. “In mice, the absence of JAK2 accelerated the course of leukemia drastically,” the scientists concluded.

The loss of JAK2 caused healthy hematopoietic stem cells to disappear in mice. “Leukemic cells, on the other hand, remained entirely unaffected; they do not need JAK2. This led to an imbalance in which the number of leukemia cells was very predominant, and eventually caused the acceleration of leukemia,” says Eva Grundschober, one of the lead authors.

“The oncogene BCR-ABL, which was present in mice with leukemia, does not appear to require JAK2 for its activity. However, JAK2 is essential for healthy cells,” explains Andrea Hölbl-Kovacic, the other lead author.

JAK2 is important for survival of hematopoietic stem cells

A closer investigation of healthy stem cells supports this hypothesis. In the absence of JAK2, healthy stem cells cannot survive and reproduce blood cells. As the next step, the following question will be raised in Sexl's laboratory: how does JAK2 mediate its life-sustaining effect on healthy stem cells? What portions of the JAK2 protein are required for this purpose and are these affected by current therapies?

The article „Acceleration of Bcr-Abl+ leukemia induced by deletion of JAK2“, by Eva Grundschober, Andrea Hölbö-Kovacic, Neha Bhagwat, Boris Kovacic, Ruth Scheicher, Eva Eckelhart, Karoline Kollmann, Matthew Keller, Florian Grebien, Kay-Uwe Wagner, Ross L. Levine and Veronika Sexl was published today in the journal Leukemia. doi:10.1038/leu.2014.152 http://www.nature.com/leu/journal/vaop/naam/abs/leu2014152a.html

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Veronika Sexl
Institute of Pharmacology and Toxicology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 25077-2910
M + 43 664 60257-6291
veronika.sexl@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/…

Media Contact

Dr. Susanna Kautschitsch idw - Informationsdienst Wissenschaft

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors