Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oncogenic signatures mapped in TCGA a guide for the development of personalized therapy

30.09.2013
Clinical trial design for new cancer therapies has historically been focused on the tissue of origin of a tumor, but a paper from researchers at Memorial Sloan-Kettering Cancer Center published on September 26 in Nature Genetics supports a new approach: one based on the genomic signature of a tumor rather than the tissue of origin in the body.

It is well known that the emergence of cancer is a multi-step process, but because of the efforts of The Cancer Genome Atlas (TCGA), funded by the US National Institutes of Health, and other large-scale cancer genomics efforts, for the first time this process can be viewed in exquisite molecular detail, mapping mutations and other molecular events affecting any of the 20,000 genes in a human cell.

Now, two major hypotheses have been confirmed from the genomic analysis of more than 3000 samples from 12 different tumor types: a limited number of specific genetic events appear to cause most tumor subtypes and tumors can be grouped by the oncogenic signatures they contain, no matter what the tissue of origin. That these oncogenic signatures are largely independent of the particular tissue in which the cancer arises indicates that certain drug combinations may be beneficial for select patients with different types of cancer.

"In future clinical trials, we envision that patients with a certain type of endometrial cancer, for example, may be enrolled in the same trial as patients with a subtype of colorectal cancer, and that patient selection for clinical trials can be guided by cancer genomics profiling in the clinic," stated Chris Sander, one of the principal investigators of Memorial Sloan-Kettering's Genome Data Analysis Center. "This work is intended to help in the design of such trials and the development of more-personalized cancer therapies."

The ability to reveal sets of cancer-causing events in molecular detail is based on three major technical and scientific developments in the last decade. New high-throughput genomic technologies and lower operating costs have enabled the collection of genetic data from many thousands of tumors. The experience and knowledge accumulated in cancer genomics in many laboratories has taught us which of the many molecular alterations in cancer are likely to contribute to oncogenesis. Linking data and knowledge, new algorithms and methods for large data analysis in the field of computational biology provide the ability to find the proverbial needles in the haystack: to derive cancer-causing molecular genetic signatures and link them to tumor subtypes and potential therapies on the background of extremely high levels of informational noise.

The Memorial Sloan-Kettering team and their colleagues in TCGA and the International Cancer Genome Consortium plan to expand these comprehensive analyses to tens of thousands of tumor samples. A glimpse of the molecular tumor landscape in more than 13,000 tumor samples is already accessible in the cBioPortal for Cancer Genomics at http://www.cbioportal.org.

Principal authors on the study are Giovanni Ciriello, Nikolaus Schultz, and Chris Sander of the Computational Biology Center at Memorial Sloan-Kettering.

The current research was supported in part by the National Cancer Institute under award number U24 CA143840.

About Memorial Sloan-Kettering Cancer Center

Memorial Sloan-Kettering Cancer Center is the world's oldest and largest private cancer center with more than 125 years devoted to exceptional patient care, innovative research, and outstanding educational programs. We are one of 41 National Cancer Institute–designated Comprehensive Cancer Centers, with state-of-the-art science flourishing side by side with clinical studies and treatment.

The close collaboration between our physicians and scientists enables us to provide patients with the best care available as we work to discover more-effective strategies to prevent, control, and ultimately cure cancer in the future. Our education programs train future physicians and scientists, and the knowledge and experience they gain at Memorial Sloan-Kettering has an impact on cancer treatment and biomedical research around the world. For more information, go to http://www.mskcc.org.

Caitlin Hool | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>