Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oncogenic signatures mapped in TCGA a guide for the development of personalized therapy

30.09.2013
Clinical trial design for new cancer therapies has historically been focused on the tissue of origin of a tumor, but a paper from researchers at Memorial Sloan-Kettering Cancer Center published on September 26 in Nature Genetics supports a new approach: one based on the genomic signature of a tumor rather than the tissue of origin in the body.

It is well known that the emergence of cancer is a multi-step process, but because of the efforts of The Cancer Genome Atlas (TCGA), funded by the US National Institutes of Health, and other large-scale cancer genomics efforts, for the first time this process can be viewed in exquisite molecular detail, mapping mutations and other molecular events affecting any of the 20,000 genes in a human cell.

Now, two major hypotheses have been confirmed from the genomic analysis of more than 3000 samples from 12 different tumor types: a limited number of specific genetic events appear to cause most tumor subtypes and tumors can be grouped by the oncogenic signatures they contain, no matter what the tissue of origin. That these oncogenic signatures are largely independent of the particular tissue in which the cancer arises indicates that certain drug combinations may be beneficial for select patients with different types of cancer.

"In future clinical trials, we envision that patients with a certain type of endometrial cancer, for example, may be enrolled in the same trial as patients with a subtype of colorectal cancer, and that patient selection for clinical trials can be guided by cancer genomics profiling in the clinic," stated Chris Sander, one of the principal investigators of Memorial Sloan-Kettering's Genome Data Analysis Center. "This work is intended to help in the design of such trials and the development of more-personalized cancer therapies."

The ability to reveal sets of cancer-causing events in molecular detail is based on three major technical and scientific developments in the last decade. New high-throughput genomic technologies and lower operating costs have enabled the collection of genetic data from many thousands of tumors. The experience and knowledge accumulated in cancer genomics in many laboratories has taught us which of the many molecular alterations in cancer are likely to contribute to oncogenesis. Linking data and knowledge, new algorithms and methods for large data analysis in the field of computational biology provide the ability to find the proverbial needles in the haystack: to derive cancer-causing molecular genetic signatures and link them to tumor subtypes and potential therapies on the background of extremely high levels of informational noise.

The Memorial Sloan-Kettering team and their colleagues in TCGA and the International Cancer Genome Consortium plan to expand these comprehensive analyses to tens of thousands of tumor samples. A glimpse of the molecular tumor landscape in more than 13,000 tumor samples is already accessible in the cBioPortal for Cancer Genomics at http://www.cbioportal.org.

Principal authors on the study are Giovanni Ciriello, Nikolaus Schultz, and Chris Sander of the Computational Biology Center at Memorial Sloan-Kettering.

The current research was supported in part by the National Cancer Institute under award number U24 CA143840.

About Memorial Sloan-Kettering Cancer Center

Memorial Sloan-Kettering Cancer Center is the world's oldest and largest private cancer center with more than 125 years devoted to exceptional patient care, innovative research, and outstanding educational programs. We are one of 41 National Cancer Institute–designated Comprehensive Cancer Centers, with state-of-the-art science flourishing side by side with clinical studies and treatment.

The close collaboration between our physicians and scientists enables us to provide patients with the best care available as we work to discover more-effective strategies to prevent, control, and ultimately cure cancer in the future. Our education programs train future physicians and scientists, and the knowledge and experience they gain at Memorial Sloan-Kettering has an impact on cancer treatment and biomedical research around the world. For more information, go to http://www.mskcc.org.

Caitlin Hool | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>