Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why omega-3 oils help at the cellular level

16.05.2012
Findings suggest possibility of boosting their health benefit

For the first time, researchers at the University of California, San Diego have peered inside a living mouse cell and mapped the processes that power the celebrated health benefits of omega-3 fatty acids.

More profoundly, they say their findings suggest it may be possible to manipulate these processes to short-circuit inflammation before it begins, or at least help to resolve inflammation before it becomes detrimental.

The work is published in the May 14, 2012 online Early Edition of the Proceedings of the National Academy of Sciences.

The therapeutic benefits of omega-3 fatty acids, which are abundant in certain fish oils, have long been known, dating back to at least the 1950s, when cod liver oil was found to be effective in treating ailments like eczema and arthritis. In the 1980s, scientists reported that Eskimos eating a fish-rich diet enjoyed better coronary health than counterparts consuming mainland foods.

"There have been tons of epidemiological studies linking health benefits to omega-3 oils, but not a lot of deep science," said Edward A. Dennis, PhD, distinguished professor of pharmacology, chemistry and biochemistry. "This is the first comprehensive study of what fish oils actually do inside a cell."

The scientists fed mouse macrophages – a kind of white blood cell – three different kinds of fatty acid: eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA). EPA and DHA are major polyunsaturated omega-3 fatty acids, essential to a broad range of cellular and bodily functions, and the primary ingredient in commercial fish oil dietary supplements. AA is a polyunsaturated omega-6 fatty acid prevalent in the human diet.

In high levels, fatty acids are toxic, so cells typically sequester them as phospholipids in their membranes. When stimulated, however, the fatty acids may be released, provoking a cascading inflammatory response. Acute or limited inflammation is, of course, a vital immunological response to physical damage or invasive pathogens. But chronic inflammation is harmful and a common element of almost every disease, from diabetes to cancer.

After supplementing the mouse macrophages with fatty acids, the scientists stimulated them to produce an inflammatory response. They discovered that omega-3 fatty acids inhibit an enzyme called cyclooxygenase (COX), which produces the prostaglandin hormones that spark inflammation. The action is similar to what happens when one takes an aspirin, which disrupts the COX-2 signaling pathway, thus reducing inflammation and pain.

On the other hand, Dennis and co-author Paul C. Norris, a graduate student in the chemistry and biochemistry department and the molecular pharmacology training program, discovered that omega-3 oils do not inhibit another group of enzymes called lipoxygenases (LOX), which are also produced by stimulated macrophages. One type of generated LOX enzyme in turn produces fat-signaling molecules called leukotrienes, which are pro-inflammatory. But Norris noted that LOX enzymes may also generate anti-inflammatory compounds called resolvins from EPA and DHA.

These observations, he said, are also helpful in identifying potential adverse effects from taking fish oil. Since omega-3 fatty acids possess overlapping functions with COX inhibitor drugs, with well-known side effects, using both in combination can produce unexpected consequences.

It is this parsing of what's happening inside cells that Dennis called "ground-breaking."

"We've been able to look inside a cell, see what fish oils do and determine that the process of inflammation at this level may be manipulatable," he said. "Now, we need to learn if we can fine-tune that process so we can use omega-3 oils to reduce the production of pro-inflammatory prostaglandins and boost the production of anti-inflammatory resolvins."

Funding for this research came, in part, from the LIPID MAPS Large Scale Collaborative Grant U54 GM069338 (Jean Chin and Sarah Dunsmore, program officers) and Grant R01 GM64611 (Jean Chin, program officer) from the National Institutes of Health; and the UC San Diego Graduate Training Program in Cellular and Molecular Pharmacology National Institutes of Health Grant T32 GM007752.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>