Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Old drug may be key to new antibiotics

23.09.2014

Lamotrigine stopped ribosomes from being created

McMaster scientists have found that an anticonvulsant drug may help in developing a new class of antibiotics.

Although dozens of antibiotics target what bacteria do, their study has looked at how a certain part of bacteria are created, and they found there is a way of stopping it.

The discovery is important as there is growing concern worldwide about how antibiotic resistance is making the cures for infections ineffective. The World Health Organization has declared that antibiotic resistance is a major threat to global health security.

The McMaster study found that an anticonvulsant drug called lamotrigine is the first chemical inhibitor of the assembly of ribosomes in bacteria. Ribosomes are the molecular machines in cells that create all proteins. Many antibiotics attack what ribosomes do. However, the McMaster team found that lamotrigine stopped ribosomes from being created in the first place.

The paper has been published by the open-access journal eLife.

"Ribosome-inhibiting antibiotics have been routinely used for more than 50 years to treat bacterial infections, but inhibitors of bacterial ribosome assembly have waited to be discovered," said Eric Brown, principal investigator of the study and a professor of biochemistry and biomedical sciences at McMaster's Michael G. DeGroote Institute for Infectious Disease Research.

"Such molecules would be an entirely new class of antibiotics, which would get around antibiotic resistance of many bacteria. We found lamotrigine works."

Jonathan Stokes, a PhD student who worked on the paper, added that the team was able to identify the precise target for the lamotrigine within the bacteria, allowing the researchers to be clear in their understanding of ribosome assembly and the therapeutic applications of these types of chemicals.

###

The team used high throughput screening technologies of the Centre for Microbial Chemical Biology at McMaster to make the discovery. The study was funded by the Canadian Institutes of Health Research, the Michael G. DeGroote Institute for Infectious Disease Research, and the Natural Sciences and Engineering Research Council.

Editors:

For more information:

Veronica McGuire
Media relations
Faculty of Health Sciences
McMaster University
vmcguir@mcmaster.ca
905-525-9140, ext. 22169

Veronica McGuire | Eurek Alert!

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>