Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU scientists first to grow liver stem cells in culture, demonstrate therapeutic benefit

26.02.2013
New mouse research published in Nature raises hope that human liver stem cells can be grown, transplanted in a similar way

For decades scientists around the world have attempted to regenerate primary liver cells known as hepatocytes because of their numerous biomedical applications, including hepatitis research, drug metabolism and toxicity studies, as well as transplantation for cirrhosis and other chronic liver conditions. But no lab in the world has been successful in identifying and growing liver stem cells in culture -- using any available technique – until now.

In the journal Nature, physician-scientists in the Papé Family Pediatric Research Institute at Oregon Health & Science University Doernbecher Children's Hospital, Portland, Ore., along with investigators at the Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, Netherlands, describe a new method through which they were able to infinitely expand liver stem cells from a mouse in a dish.

"This study raises the hope that the human equivalent of these mouse liver stem cells can be grown in a similar way and efficiently converted into functional liver cells," said Markus Grompe, M.D., study co-author, director of the Papé Family Pediatric Research Institute at OHSU Doernbecher Children's Hospital; and professor of pediatrics, and molecular and medical genetics in the OHSU School of Medicine.

In a previous Nature study, investigators at the Hubrecht Institute, led by Hans Clever, M.D, Ph.D., were the first to identify stem cells in the small intestine and colon by observing the expression of the adult stem cell marker Lgr5 and growth in response to a growth factor called Wnt. They also hypothesized that the unique expression pattern of Lgr5 could mark stem cells in other adult tissues, including the liver, an organ for which stem cell identification remained elusive.

In the current Nature study, Grompe and colleagues in the Papé Family Pediatric Research Institute at OHSU Doernbecher used a modified version of the Clever method and discovered that Wnt-induced Lgr5 expression not only marks stem cell production in the liver, but it also defines a class of stem cells that become active when the liver is damaged.

The scientists were able to grow these liver stem cells exponentially in a dish – an accomplishment never before achieved – and then transplant them in a specially designed mouse model of liver disease, where they continued to grow and show a modest therapeutic effect.

"We were able to massively expand the liver cells and subsequently convert them to hepatocytes at a modest percentage. Going forward, we will enlist other growth factors and conditions to improve that percentage. Liver stem cell therapy for chronic liver disease in humans is coming," said Grompe.

The study, "In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration," was funded by National Institutes of Health Grant R0I DK05192.

Investigators who contributed to this research include: Grompe, Craig Dorrell, Annelise Haft, Papé Family Pediatric Research Institute, OHSU Doernbecher Children's Hospital; Clever, Meritxell Huch, Sylvia Boj, Johan van Es, Vivian Li, Mare van de Wetering, Toshiro Sato, Karien Hamer, Nobuo Sasaki, Robert Vries, Hubrecht Institute for Developmental Biology and Stem Cell Research; and Milton Finegold, Texas Children's Hospital Houston.

ABOUT OHSU DOERNBECHER CHILDREN'S HOSPITAL

OHSU Doernbecher Children's Hospital ranks among the top 50 children's hospitals in the United States, according to U.S. News & World Report 2012-13 Best Children's Hospitals, and is one of only 22 National Institutes of Health-designated Child Health Research Centers in the country. OHSU Doernbecher cares for tens of thousands of children each year from Oregon, Southwest Washington and around the nation, resulting in more than 175,000 discharges, surgeries, transports and outpatient visits annually.

Tamara Hargens-Bradley | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>