Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU discovery may lead to new treatment for ALS

19.07.2012
The research, published in G3: Genes, Genomes, Genetics, describes changes in gene expression in the nervous system following genetic manipulations of the protein TDP-43

Researchers at Oregon Health & Science University School of Dentistry have discovered that TDP-43, a protein strongly linked to ALS (Amyotrophic Lateral Sclerosis) and other neurodegenerative diseases, appears to activate a variety of different molecular pathways when genetically manipulated. The findings have implications for understanding and possibly treating ALS and neurodegenerative diseases such as Alzheimer's and Parkinson's.

ALS affects two in 100,000 adults in the United States annually and the prognosis for patients is grim.The new discovery is published online in G3: Genes, Genomes, Genetics (and the July 2012 print issue of G3).

Using a fruit fly model, the OHSU team genetically increased or eliminated TDP-43 to study its effect on the central nervous system. By using massively parallel sequencing methods to profile the expression of genes in the central nervous system, the team found that the loss of TDP-43 results in widespread gene activation and altered splicing, much of which is reversed by rescue of TDP-43 expression. Although previous studies have implicated both absence and over expression of TDP-43 in ALS, the OHSU study showed little overlap in the gene expression between these two manipulations, suggesting that the bulk of the genes affected are different.

"Our data suggest that TDP-43 plays a role in synaptic transmission, synaptic release and endocytosis," said Dennis Hazelett, Ph.D., lead author of the study. "We also uncovered a potential novel regulation of several pathways, many targets of which appear to be conserved."

Additional study authors include: Jer-Cherng Chang, Ph.D., OHSU School of Dentistry Department of Integrative Biosciences; Daniel Lakeland, a graduate student at the University of Southern California; and David Morton, Ph.D., professor and associate dean for research, OHSU School of Dentistry Department of Integrative Biosciences.

The study was supported by grants from the National Institutes of Health (NS071186); the ALS Association; and the Muscular Dystrophy Association.

Sydney Clevenger | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Selectively Reactivating Nerve Cells to Retrieve a Memory
01.06.2020 | Universität Heidelberg

nachricht CeMM study reveals how a master regulator of gene transcription operates
01.06.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>