Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017

The female sex hormone oestrogen protects the structural stability of bones. To date, however, it had been unclear exactly which cells were involved in the hormone’s protective function in preventing changes in bone density. Researchers at Vetmeduni Vienna were able to show for the first time that oestrogen uses a certain cell type as a “mediator” for its beneficial effects on bone. When oestrogen binds to these so-called “bone lining cells”, which cover the bone surfaces, it regulates the expression of a protein called RANKL in these cells. Oestrogen deficiency leads to uncontrolled expression of RANKL, which can trigger pathological changes in the bones. Published in Scientific Reports.

The most important female sex hormone, oestrogen, plays a crucial role in the regulation of bone mass. Oestrogen deficiency is known to be a major cause of postmenopausal osteoporosis, or bone weakness. Skeletal stability and pathological skeletal changes thus depend directly on the hormone’s availability and its interaction with the bone cells.


Estrogen protects bones from bone Resorption by Controlling RANKL in bone lining cells.

Figure: Reinhold G. Erben, Scientific Reports: http://creativecommons.org/licenses/by/4.0/

Until now, however, the actual target cells responsible for mediating the effect of oestrogen on bone had still been unknown. Researchers at Vetmeduni Vienna have now demonstrated that bone lining cells act as “gatekeepers” for the hormone. By binding to these cells, oestrogen controls the expression of RANKL, an important factor in bone turnover and remodelling.

Oestrogen uses a certain cell type to mediate its effect on bone density

The development of bone structure depends on a complex system of hormones and proteins. One important component is the signalling molecule RANKL. It influences the development of special cells, the so-called osteoclasts that are responsible for bone resorption. A lack of oestrogen or the corresponding cell receptors where it can bind results in the overproduction of RANKL, which triggers a variety of pathological bone changes.

Several studies confirm oestrogen’s role in regulating RANKL production and thus in protecting skeletal integrity. “Which cells it must bind to in order to have this effect, however, had been a matter of debate,” says study director Reinhold Erben from the Unit of Physiology, Pathophysiology and Experimental Endocrinology. “We were now able to confirm that oestrogen’s effect on bone occurs primarily through binding to the bone lining cells.”

The bone lining cells cover the bone surfaces and contact other bone cells, such as the osteocytes that reside inside the bones, through cell-to-cell contact. They had been suspected of being involved in the regulation of bone resorption through the osteoclasts. The fact that the bone lining cells, as target cells for oestrogen, play a role in bone maintenance confirms this suspicion.

Tissue cells surrounding the bones act as mediator of the hormonal effect

Erben and his team based their study on the use of a special mouse model and new experimental methods. “We used different groups of mice, in which either the oestrogen receptor or RANKL was inactivated in hematopoietic cells or in mesenchymal cells, to be able to identify the target cells of the hormone. The effect we were looking for was found only in mesenchymal cells,” explains Erben.

To identify the cells, the research team used a special method called laser capture microdissection to exactly separate individual cell types from the remaining tissue. They then determined the gene frequency using RNA analysis and were so able to confirm the bone lining cells as the primary target cells.

“The bone lining cells also make sense as gatekeepers or mediators for the effect of the bound hormone because of their position on the bone and their connection to the other bone cells,” says Erben. “Future studies are needed to answer whether other hormones also influence bone turnover via this cell type or if they use other cells. The aim of our study was merely to answer the question of how the interaction of oestrogen with bone functions.”

Service:
The article “Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells“ by Carmen Streicher, Alexandra Heyny, Olena Andrukhova, Barbara Haigl, Svetlana Slavic, Christiane Schüler, Karoline Kollmann, Ingrid Kantner, Veronika Sexl, Miriam Kleiter, Lorenz C. Hofbauer, Paul J. Kostenuik und Reinhold G. Erben was published in Scientific Reports.
https://www.nature.com/articles/s41598-017-06614-0?WT.feed_name=subjects_medical...

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Reinhold Erben
Unit of Physiology, Pathophysiology and Experimental Endocrinology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4550
reinhold.erben@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2017/...

Mag.rer.nat Georg Mair | Veterinärmedizinische Universität Wien

Further reports about: Pathophysiology RANKL Vetmeduni bone cells cell type mesenchymal cells oestrogen

More articles from Life Sciences:

nachricht The evolution and genomic basis of beetle diversity
19.11.2019 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Scientists discover how the molecule-sorting station in our cells is formed and maintained
18.11.2019 | Tokyo University of Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

How LISA pathfinder detected dozens of 'comet crumbs'

19.11.2019 | Physics and Astronomy

Trash talk hurts, even when it comes from a robot

19.11.2019 | Social Sciences

The evolution and genomic basis of beetle diversity

19.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>