Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017

The female sex hormone oestrogen protects the structural stability of bones. To date, however, it had been unclear exactly which cells were involved in the hormone’s protective function in preventing changes in bone density. Researchers at Vetmeduni Vienna were able to show for the first time that oestrogen uses a certain cell type as a “mediator” for its beneficial effects on bone. When oestrogen binds to these so-called “bone lining cells”, which cover the bone surfaces, it regulates the expression of a protein called RANKL in these cells. Oestrogen deficiency leads to uncontrolled expression of RANKL, which can trigger pathological changes in the bones. Published in Scientific Reports.

The most important female sex hormone, oestrogen, plays a crucial role in the regulation of bone mass. Oestrogen deficiency is known to be a major cause of postmenopausal osteoporosis, or bone weakness. Skeletal stability and pathological skeletal changes thus depend directly on the hormone’s availability and its interaction with the bone cells.


Estrogen protects bones from bone Resorption by Controlling RANKL in bone lining cells.

Figure: Reinhold G. Erben, Scientific Reports: http://creativecommons.org/licenses/by/4.0/

Until now, however, the actual target cells responsible for mediating the effect of oestrogen on bone had still been unknown. Researchers at Vetmeduni Vienna have now demonstrated that bone lining cells act as “gatekeepers” for the hormone. By binding to these cells, oestrogen controls the expression of RANKL, an important factor in bone turnover and remodelling.

Oestrogen uses a certain cell type to mediate its effect on bone density

The development of bone structure depends on a complex system of hormones and proteins. One important component is the signalling molecule RANKL. It influences the development of special cells, the so-called osteoclasts that are responsible for bone resorption. A lack of oestrogen or the corresponding cell receptors where it can bind results in the overproduction of RANKL, which triggers a variety of pathological bone changes.

Several studies confirm oestrogen’s role in regulating RANKL production and thus in protecting skeletal integrity. “Which cells it must bind to in order to have this effect, however, had been a matter of debate,” says study director Reinhold Erben from the Unit of Physiology, Pathophysiology and Experimental Endocrinology. “We were now able to confirm that oestrogen’s effect on bone occurs primarily through binding to the bone lining cells.”

The bone lining cells cover the bone surfaces and contact other bone cells, such as the osteocytes that reside inside the bones, through cell-to-cell contact. They had been suspected of being involved in the regulation of bone resorption through the osteoclasts. The fact that the bone lining cells, as target cells for oestrogen, play a role in bone maintenance confirms this suspicion.

Tissue cells surrounding the bones act as mediator of the hormonal effect

Erben and his team based their study on the use of a special mouse model and new experimental methods. “We used different groups of mice, in which either the oestrogen receptor or RANKL was inactivated in hematopoietic cells or in mesenchymal cells, to be able to identify the target cells of the hormone. The effect we were looking for was found only in mesenchymal cells,” explains Erben.

To identify the cells, the research team used a special method called laser capture microdissection to exactly separate individual cell types from the remaining tissue. They then determined the gene frequency using RNA analysis and were so able to confirm the bone lining cells as the primary target cells.

“The bone lining cells also make sense as gatekeepers or mediators for the effect of the bound hormone because of their position on the bone and their connection to the other bone cells,” says Erben. “Future studies are needed to answer whether other hormones also influence bone turnover via this cell type or if they use other cells. The aim of our study was merely to answer the question of how the interaction of oestrogen with bone functions.”

Service:
The article “Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells“ by Carmen Streicher, Alexandra Heyny, Olena Andrukhova, Barbara Haigl, Svetlana Slavic, Christiane Schüler, Karoline Kollmann, Ingrid Kantner, Veronika Sexl, Miriam Kleiter, Lorenz C. Hofbauer, Paul J. Kostenuik und Reinhold G. Erben was published in Scientific Reports.
https://www.nature.com/articles/s41598-017-06614-0?WT.feed_name=subjects_medical...

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Reinhold Erben
Unit of Physiology, Pathophysiology and Experimental Endocrinology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4550
reinhold.erben@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2017/...

Mag.rer.nat Georg Mair | Veterinärmedizinische Universität Wien

Further reports about: Pathophysiology RANKL Vetmeduni bone cells cell type mesenchymal cells oestrogen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>