Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Odds of quitting smoking affected by genetics

31.05.2012
NIH-funded research shows genetics can predict success of smoking cessation and need for medications

Genetics can help determine whether a person is likely to quit smoking on his or her own or need medication to improve the chances of success, according to research published in today's American Journal of Psychiatry. Researchers say the study moves health care providers a step closer to one day providing more individualized treatment plans to help patients quit smoking.

The study was supported by multiple components of the National Institutes of Health, including the National Institute on Drug Abuse (NIDA), the National Human Genome Research Institute, the National Cancer Institute, and the Clinical and Translational Science Awards program, administered by the National Center for Advancing Translational Sciences.

"This study builds on our knowledge of genetic vulnerability to nicotine dependence, and will help us tailor smoking cessation strategies accordingly," said NIDA Director Nora D. Volkow, M.D. "It also highlights the potential value of genetic screening in helping to identify individuals early on and reduce their risk for tobacco addiction and its related negative health consequences."

Researchers focused on specific variations in a cluster of nicotinic receptor genes, CHRNA5-CHRNA3-CHRNB4, which prior studies have shown contribute to nicotine dependence and heavy smoking. Using data obtained from a previous study supported by the National Heart Lung and Blood Institute, researchers showed that individuals carrying the high-risk form of this gene cluster reported a 2-year delay in the median quit age compared to those with the low-risk genes. This delay was attributable to a pattern of heavier smoking among those with the high risk gene cluster. The researchers then conducted a clinical trial, which confirmed that persons with the high-risk genes were more likely to fail in their quit attempts compared to those with the low-risk genes when treated with placebo. However, medications approved for nicotine cessation (such as nicotine replacement therapies or bupropion) increased the likelihood of abstinence in the high risk groups. Those with the highest risk had a three-fold increase in their odds of being abstinent at the end of active treatment compared to placebo, indicating that these medications may be particularly beneficial for this population.

"We found that the effects of smoking cessation medications depend on a person's genes," said first author Li-Shiun Chen, M.D., of the Washington University School of Medicine, St. Louis. "If smokers have the risk genes, they don't quit easily on their own and will benefit greatly from the medications. If smokers don't have the risk genes, they are likely to quit successfully without the help of medications such as nicotine replacement or bupropion."

According to the Centers for Disease Control and Prevention, tobacco use is the single most preventable cause of disease, disability, and death in the United States. Smoking or exposure to secondhand smoke results in more than 440,000 preventable deaths each year -- about 1 in 5 U.S. deaths overall. Another 8.6 million live with a serious illness caused by smoking. Despite these well-documented health costs, over 46 million U.S. adults continue to smoke cigarettes.

The study can be found at: http://ajp.psychiatryonline.org/article.aspx?articleID=1169679. For information on tobacco addiction, go to: www.drugabuse.gov/drugs-abuse/tobacco-addiction-nicotine. For more information on tools and resources to help quit smoking, go to: www.smokefree.gov/.

This work was partially funded by NIDA under grant numbers DA19706, DA026911, DA021237 and DA030398.

The National Institute on Drug Abuse is a component of the National Institutes of Health, U.S. Department of Health and Human Services. NIDA supports most of the world's research on the health aspects of drug abuse and addiction. The Institute carries out a large variety of programs to inform policy and improve practice. Fact sheets on the health effects of drugs of abuse and information on NIDA research and other activities can be found on the NIDA home page at www.drugabuse.gov, which is now compatible with your smartphone, iPad or tablet. To order publications in English or Spanish, call NIDA's DrugPubs research dissemination center at 1-877-NIDA-NIH or 240-645-0228 (TDD) or fax or email requests to 240-645-0227 or drugpubs@nida.nih.gov. Online ordering is available at http://drugpubs.drugabuse.gov. NIDA's media guide can be found at http://drugabuse.gov/mediaguide/, and its new easy-to-read website can be found at www.easyread.drugabuse.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIDA Press Team | EurekAlert!
Further information:
http://www.nida.nih.gov
http://www.nih.gov

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>