Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Octopuses Have a Unique Way to Control Their 'Odd' Forms

20.04.2015

New Research from Hebrew University of Jerusalem's Octopus Research Group

The body plan of octopuses is nothing if not unique, with a sophisticated brain in a soft, bilaterally symmetrical body, encircled by eight radially symmetrical and incredibly flexible arms.


Mapping how octopuses control their movement: Dr. Guy Levy (L) and Prof. Benny Hochner at the Hebrew University of Jerusalem's Octopus Research Group. For videos, see below. (Photo: Hebrew University)

Now, reporting the first detailed kinematic analysis of octopus arm coordination in crawling, researchers from the Hebrew University of Jerusalem show that the animals have a unique motor control strategy to match their “odd” form. The researchers report their findings in the Cell Press journal Current Biology.

“Octopuses use unique locomotion strategies that are different from those found in other animals,” says Prof. Binyamin (Benny) Hochner, Principal Investigator at the Hebrew University of Jerusalem's Octopus Research Group. “This is most likely due to their soft molluscan body that led to the evolution of ‘strange’ morphology, enabling efficient locomotion control without a rigid skeleton.”

Earlier studies of octopus behavior by the Hebrew University team have focused on goal-directed arm movements, like reaching to a target or fetching food to the mouth, Hochner explains.

(See, for instance, http://www.eurekalert.org/pub_releases/2006-04/cp-hto041306.php , http://www.eurekalert.org/pub_releases/2014-05/cp-hod050714.php , and

http://www.eurekalert.org/pub_releases/2011-05/thuo-hur051811.php   ). The new study is the first to tackle a larger question: how octopuses manage to coordinate their eight long, flexible arms during locomotion.

Octopuses most likely evolved from animals more similar to clams, with a protective outer shell and almost no movement to speak of. “During evolution, octopuses lost their heavy protective shells and became more maneuverable on the one hand, but also more vulnerable on the other hand,” says Hebrew University co-author Dr. Guy Levy, of the Department of Neurobiology and the Edmond & Lily Safra Center for Brain Sciences. “Their locomotory abilities evolved to be much faster than those of typical molluscs, probably to compensate for the lack of shell.”

The evolution of a typical snail’s foot into long and slender arms gave octopuses extraordinary flexibility. Excellent vision, together with a highly developed and large brain and the ability to color camouflage, made cephalopods very successful hunters. But how do they control the movements of those remarkable bodies?

After poring over videos of octopuses in action, frame by frame, the researchers made several surprising discoveries. Despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation. The orientation of its body and crawling direction are independently controlled, and its crawling lacks any apparent rhythmical patterns in limb coordination.

Hochner, Levy, and their colleagues show that this uncommon maneuverability of octopuses is derived from the radial symmetry of their arms around the body and the simple mechanism by which the arms create the crawling thrust: pushing-by-elongation.

“These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction,” the researchers write. The animal needs only to choose which arms to activate in order to determine the direction of locomotion.

The findings lend support to what’s known as the Embodied Organization concept. In the traditional view, motor-control strategies are devised to fit the body. But, the researchers say, under Embodied Organization, the control and the body evolve together in lockstep within the context of the environment with which those bodies interact.

“This concept, which is borrowed from robotics, argues that the optimal behavior of an autonomous robot or an animal is achieved as a result of the optimization of the reciprocal and dynamical interactions between the brain, body, and the constantly changing environment, thus leading to optimal adaptation of the system, as a whole, to its ecological niche,” Levy says. “Another important virtue of this type of organization is that every level, including the physical properties and the morphology, contribute to the control of the emerging behavior—and not only the brain, as we tend to think.”

Levy and Hochner say their next step is to uncover the neural circuits involved in the octopuses’ coordinated crawling.

The research was supported by the European Commission EP-7 projects OCTOPUS and STIFF-FLOP.

Videos accompanying this press release are available for download at:
http://media.huji.ac.il/new/multimedia/hu150516_LevyOctopusCrawling_MovieS1.mp4
http://media.huji.ac.il/new/multimedia/hu150516_LevyOctopusCrawling_MovieS2.mp4
http://media.huji.ac.il/new/multimedia/hu150516_LevyOctopus.mp4
(CREDIT: Videos courtesy Dr. Guy Levy / Hebrew University Octopus Research Group)

Original press release text courtesy of Cell Press.

To contact the researchers:

Prof. Benny Hochner: Benny.Hochner@mail.huji.ac.il
Dr. Guy Levy: Guy.Levy@mail.huji.ac.il

Media contact:

Dov Smith
The Hebrew University of Jerusalem
+972-2-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Dov Smith | Hebrew University

Further reports about: Hebrew University locomotion mechanism morphology movements octopus octopuses

More articles from Life Sciences:

nachricht Another piece of Ebola virus puzzle identified
17.01.2019 | Texas Biomedical Research Institute

nachricht New scale for electronegativity rewrites the chemistry textbook
17.01.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>