Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Octopuses Have a Unique Way to Control Their 'Odd' Forms

20.04.2015

New Research from Hebrew University of Jerusalem's Octopus Research Group

The body plan of octopuses is nothing if not unique, with a sophisticated brain in a soft, bilaterally symmetrical body, encircled by eight radially symmetrical and incredibly flexible arms.


Mapping how octopuses control their movement: Dr. Guy Levy (L) and Prof. Benny Hochner at the Hebrew University of Jerusalem's Octopus Research Group. For videos, see below. (Photo: Hebrew University)

Now, reporting the first detailed kinematic analysis of octopus arm coordination in crawling, researchers from the Hebrew University of Jerusalem show that the animals have a unique motor control strategy to match their “odd” form. The researchers report their findings in the Cell Press journal Current Biology.

“Octopuses use unique locomotion strategies that are different from those found in other animals,” says Prof. Binyamin (Benny) Hochner, Principal Investigator at the Hebrew University of Jerusalem's Octopus Research Group. “This is most likely due to their soft molluscan body that led to the evolution of ‘strange’ morphology, enabling efficient locomotion control without a rigid skeleton.”

Earlier studies of octopus behavior by the Hebrew University team have focused on goal-directed arm movements, like reaching to a target or fetching food to the mouth, Hochner explains.

(See, for instance, http://www.eurekalert.org/pub_releases/2006-04/cp-hto041306.php , http://www.eurekalert.org/pub_releases/2014-05/cp-hod050714.php , and

http://www.eurekalert.org/pub_releases/2011-05/thuo-hur051811.php   ). The new study is the first to tackle a larger question: how octopuses manage to coordinate their eight long, flexible arms during locomotion.

Octopuses most likely evolved from animals more similar to clams, with a protective outer shell and almost no movement to speak of. “During evolution, octopuses lost their heavy protective shells and became more maneuverable on the one hand, but also more vulnerable on the other hand,” says Hebrew University co-author Dr. Guy Levy, of the Department of Neurobiology and the Edmond & Lily Safra Center for Brain Sciences. “Their locomotory abilities evolved to be much faster than those of typical molluscs, probably to compensate for the lack of shell.”

The evolution of a typical snail’s foot into long and slender arms gave octopuses extraordinary flexibility. Excellent vision, together with a highly developed and large brain and the ability to color camouflage, made cephalopods very successful hunters. But how do they control the movements of those remarkable bodies?

After poring over videos of octopuses in action, frame by frame, the researchers made several surprising discoveries. Despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation. The orientation of its body and crawling direction are independently controlled, and its crawling lacks any apparent rhythmical patterns in limb coordination.

Hochner, Levy, and their colleagues show that this uncommon maneuverability of octopuses is derived from the radial symmetry of their arms around the body and the simple mechanism by which the arms create the crawling thrust: pushing-by-elongation.

“These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction,” the researchers write. The animal needs only to choose which arms to activate in order to determine the direction of locomotion.

The findings lend support to what’s known as the Embodied Organization concept. In the traditional view, motor-control strategies are devised to fit the body. But, the researchers say, under Embodied Organization, the control and the body evolve together in lockstep within the context of the environment with which those bodies interact.

“This concept, which is borrowed from robotics, argues that the optimal behavior of an autonomous robot or an animal is achieved as a result of the optimization of the reciprocal and dynamical interactions between the brain, body, and the constantly changing environment, thus leading to optimal adaptation of the system, as a whole, to its ecological niche,” Levy says. “Another important virtue of this type of organization is that every level, including the physical properties and the morphology, contribute to the control of the emerging behavior—and not only the brain, as we tend to think.”

Levy and Hochner say their next step is to uncover the neural circuits involved in the octopuses’ coordinated crawling.

The research was supported by the European Commission EP-7 projects OCTOPUS and STIFF-FLOP.

Videos accompanying this press release are available for download at:
http://media.huji.ac.il/new/multimedia/hu150516_LevyOctopusCrawling_MovieS1.mp4
http://media.huji.ac.il/new/multimedia/hu150516_LevyOctopusCrawling_MovieS2.mp4
http://media.huji.ac.il/new/multimedia/hu150516_LevyOctopus.mp4
(CREDIT: Videos courtesy Dr. Guy Levy / Hebrew University Octopus Research Group)

Original press release text courtesy of Cell Press.

To contact the researchers:

Prof. Benny Hochner: Benny.Hochner@mail.huji.ac.il
Dr. Guy Levy: Guy.Levy@mail.huji.ac.il

Media contact:

Dov Smith
The Hebrew University of Jerusalem
+972-2-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Dov Smith | Hebrew University

Further reports about: Hebrew University locomotion mechanism morphology movements octopus octopuses

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>