Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obstacles No Barrier to Higher Speeds for Worms

08.02.2012
Obstacles in an organism’s path can help it to move faster, not slower, researchers from New York University’s Applied Math Lab at the Courant Institute of Mathematical Sciences have found through a series of experiments and computer simulations.

Their findings, which appear in the Journal of the Royal Society Interface, have implications for a better understanding of basic locomotion strategies found in biology, and the survival and propagation of the parasite that causes malaria.

Nematodes, which are very small worms, and many other organisms use a snake-like, undulatory motion to propel forward across dry surfaces and through fluids. There are, however, many instances where small organisms must make their way through a fluid-filled environment studded with obstacles that are comparable in size to the swimmers themselves. Nearly all microscopic nematodes, about one millimeter in length, face such barriers when moving through wet soil—the soil’s granules serve as hurdles these creatures must navigate. Similarly, the malaria parasite’s male gametes, or reproductive cells, must swim through a dense suspension of their host's blood cells in order to procreate. A similar situation arises for spermatozoa moving through the reproductive tract.

In the Journal of the Royal Society Interface study, the Applied Math Lab (AML) group sought to understand how efficiently such undulating organisms can move through obstacle-laden fluids. To do so, they conducted a study comparing experiments using live worms, the nematode C. elegans, with the results of a computer model of a worm moving in a virtual environment. In the experiment, the worms swam through a very shallow pool filled with a lattice of obstructing micro-pillars while the computer simulation gave a benchmark of a worm moving blindly without sensing and response.

Surprisingly, C. elegans was able to advance much more quickly through the lattice of obstacles than through a fluid in which their movement was unimpeded.

“If the lattice is neither too tight nor too loose, the worms move much faster by threading between and pushing off the pillars,” the researchers wrote.

The second surprise was that the computer simulation gave very similar results, reproducing the fast motions of the worm in the lattice, but also showing complex “life-like” behaviors that had been interpreted as coming from sensing and response of the worm to its local environment.

These results enhance our understanding of biological locomotion through tortuous environments like soils or the reproductive tract, showing how real organisms can take advantage of what seems a defiant complexity, and offer intriguing insights into how the reproductive processes of dangerous parasites might be interrupted.

The study’s co-authors were: Trushant Majmudar, a post-doctoral fellow; Eric Keaveny, a former post-doctoral fellow who is now a lecturer at Imperial College London; Professor Jun Zhang; and Professor Michael Shelley.

The study was funded by grants from the National Science Foundation.

James Devitt | Newswise Science News
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>