Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

O2 stable hydrogenases for applications

23.07.2018

Progress in catalysis research

A team of researchers from the Max Planck Institute for Chemical Energy Conversion and the MPI für Kohlenforschung in Mülheim an der Ruhr have succeeded in optimizing naturally occurring catalysts (hydrogenases) for application.


Dr. James Birrell & Dr. Patricia Rodríguez Maciá

MPI CEC

Hydrogen as an energy vector. Hydrogen gas (H2) has been proposed as an ideal energy vector. It can be produced from water, ideally using renewable energy sources and using an efficient catalyst to split water into H2 and oxygen (O2).

The H2 produced can then be stored as a fuel and consumed in a fuel cell to produce electricity on demand generating harmless water as a waste product. This technology is already available and can reach high efficiencies. Unfortunately, the catalysts required are based on rare and expensive metals like platinum.

Bio-hydrogen. Nature also employs H2 as a fuel, but instead of using precious metals, living organisms utilize enzymes as catalysts, and the catalyst of choice for H2 cycling are the hydrogenases. The active center of these enzymes contains earth-abundant metals like nickel and/or iron and can operate as efficiently as platinum. However, hydrogenases are very sensitive to oxygen and cannot be handled under air, complicating manipulation of them and therefore limiting their use in technological applications.

Producing “easy-to-handle” hydrogenases. Very recently, a team from the Mülheim-based Max Planck Institutes (Mülheim Chemistry Campus) have discovered a way to protect these sensitive enzymes from oxygen damage. Treating the purified hydrogenase with strong oxidizing agents in the presence of sulfide converted it to an oxygen stable form.

Spectroscopic and electrochemical methods were used to characterize the oxygen-stable state obtained. The oxygen stable enzyme can then be stored and handled under air making it easy to employ in fuel cells or water splitting devices. This research provides a step forward towards the use of these enzymes in technological applications as well as in understanding the mechanism of inactivation by oxygen. It also provides clues for protecting synthetic molecular catalysts designed for hydrogen conversion and production.

Funding
The work was supported by the Max Planck Society and the Cluster of Excellence RESOLV (EXC1069) from the Deutsche Forschungsgemeinschaft (DFG).

Original publication
Patricia Rodríguez-Maciá, Edward J. Reijerse, Maurice van Gastel, Serena DeBeer, Wolfgang Lubitz, Olaf Rüdiger, and James A. Birrell. Sulfide Protects [FeFe] Hydrogenases From O2 J. Am. Chem. Soc. (Just Accepted Manuscript) DOI: 10.1021/jacs.8b04339

Wissenschaftliche Ansprechpartner:

Dr. James Birrell
Max Planck Institute for Chemical Energy Conversion
Phone: +49-(0)208-306-3586
Email: james.birrell@cec.mpg.de

Originalpublikation:

https://pubs.acs.org/doi/10.1021/jacs.8b04339

Weitere Informationen:

https://cec.mpg.de/pressemitteilungen/pressemitteilungen/

Christin Ernst M.A. | Max-Planck-Institut für Chemische Energiekonversion

Further reports about: Energy Hydrogen Max Planck Institute Max-Planck-Institut catalyst enzymes platinum

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>