Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

O2 stable hydrogenases for applications

23.07.2018

Progress in catalysis research

A team of researchers from the Max Planck Institute for Chemical Energy Conversion and the MPI für Kohlenforschung in Mülheim an der Ruhr have succeeded in optimizing naturally occurring catalysts (hydrogenases) for application.


Dr. James Birrell & Dr. Patricia Rodríguez Maciá

MPI CEC

Hydrogen as an energy vector. Hydrogen gas (H2) has been proposed as an ideal energy vector. It can be produced from water, ideally using renewable energy sources and using an efficient catalyst to split water into H2 and oxygen (O2).

The H2 produced can then be stored as a fuel and consumed in a fuel cell to produce electricity on demand generating harmless water as a waste product. This technology is already available and can reach high efficiencies. Unfortunately, the catalysts required are based on rare and expensive metals like platinum.

Bio-hydrogen. Nature also employs H2 as a fuel, but instead of using precious metals, living organisms utilize enzymes as catalysts, and the catalyst of choice for H2 cycling are the hydrogenases. The active center of these enzymes contains earth-abundant metals like nickel and/or iron and can operate as efficiently as platinum. However, hydrogenases are very sensitive to oxygen and cannot be handled under air, complicating manipulation of them and therefore limiting their use in technological applications.

Producing “easy-to-handle” hydrogenases. Very recently, a team from the Mülheim-based Max Planck Institutes (Mülheim Chemistry Campus) have discovered a way to protect these sensitive enzymes from oxygen damage. Treating the purified hydrogenase with strong oxidizing agents in the presence of sulfide converted it to an oxygen stable form.

Spectroscopic and electrochemical methods were used to characterize the oxygen-stable state obtained. The oxygen stable enzyme can then be stored and handled under air making it easy to employ in fuel cells or water splitting devices. This research provides a step forward towards the use of these enzymes in technological applications as well as in understanding the mechanism of inactivation by oxygen. It also provides clues for protecting synthetic molecular catalysts designed for hydrogen conversion and production.

Funding
The work was supported by the Max Planck Society and the Cluster of Excellence RESOLV (EXC1069) from the Deutsche Forschungsgemeinschaft (DFG).

Original publication
Patricia Rodríguez-Maciá, Edward J. Reijerse, Maurice van Gastel, Serena DeBeer, Wolfgang Lubitz, Olaf Rüdiger, and James A. Birrell. Sulfide Protects [FeFe] Hydrogenases From O2 J. Am. Chem. Soc. (Just Accepted Manuscript) DOI: 10.1021/jacs.8b04339

Wissenschaftliche Ansprechpartner:

Dr. James Birrell
Max Planck Institute for Chemical Energy Conversion
Phone: +49-(0)208-306-3586
Email: james.birrell@cec.mpg.de

Originalpublikation:

https://pubs.acs.org/doi/10.1021/jacs.8b04339

Weitere Informationen:

https://cec.mpg.de/pressemitteilungen/pressemitteilungen/

Christin Ernst M.A. | Max-Planck-Institut für Chemische Energiekonversion

Further reports about: Energy Hydrogen Max Planck Institute Max-Planck-Institut catalyst enzymes platinum

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>