Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU, Harvard chemists create bipedal, autonomous DNA walker

06.04.2009
Device mimics role of cell's transportation system

Chemists at New York University and Harvard University have created a bipedal, autonomous DNA "walker" that can mimic a cell's transportation system.

The device, which marks a step toward more complex synthetic molecular motor systems, is described in the most recent issue of the journal Science. For a video demonstration of the walker, go to http://www.nyu.edu/public.affairs/videos/qtime/biped_movie.mov.

Two fundamental components of life's building blocks are DNA, which encodes instructions for making proteins, and motor proteins, such as kinesin, which are part of a cell's transportation system. In nature, single strands of DNA—each containing four molecules, or bases, attached to backbone—self-assemble to form a double helix when their bases match up. Kinesin is a molecular motor that carries various cargoes from one place in the cell to another. Scientists have sought to re-create this capability by building DNA walkers.

Earlier versions of walkers, which move along a track of DNA, did not function autonomously, thereby requiring intervention at each step. A challenge these previous devices faced was coordinating the movement of the walker's legs so they could move in a synchronized fashion without falling off the track.

To create a walker that could move on its own, the NYU and Harvard researchers employed two DNA "fuel strands" (purple and green in the above video). These fuel strands push the walker (blue) along a track of DNA, thereby allowing the walker and the fuel strands to function as a catalytic unit.

The forward progress of the system is driven by the fact that more base pairs are formed every step—a process that creates the energy necessary for movement. As the walker moves along the DNA track, it forms base pairs. Simultaneously, the fuel strands move the walker along by binding to the track and then releasing the walker's legs, thereby allowing the walker to take "steps".

The track's length is 49 nanometers—if the track was one meter long, an actual meter, enlarged proportionally, would be the approximate diameter of the earth.

The walker was created in the laboratory of NYU Chemistry Professor Nadrian Seeman, one of the article's co-authors. The paper's other authors were Tosan Omabegho, a doctoral candidate at Harvard's School of Engineering and Applied Sciences, and Ruojie Sha, a senior research associate in the NYU Chemistry Department.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>