Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear hormone receptors, microRNAs form developmental switch

06.04.2009
A particular nuclear hormone receptor called DAF-12 and molecules called microRNAs in the let-7 family form a molecular switch that encourages cells in the larvae of a model worm to shift to a more developed state, said a consortium led by researchers from Baylor College of Medicine (www.bcm.edu) in a report that appears online today in the journal Science (www.sciencemag.org).

As organisms go through the stages of life, hormones coordinate the changes. Nuclear receptors respond to hormones to coordinate stage transitions, but how they do so is not well understood.

GOING FROM STAGE 2 TO STAGE 3

"We knew that nuclear hormone receptors were involved in stage 2 to stage 3 transitions in Caenorhabditis elegans," said Dr. Adam Antebi (http://www.bcm.edu/mcb/?PMID=8411), associate professor in the Huffington Center on Aging at BCM and the report's senior author. "Another class of molecules called microRNAs is also involved in that transition. We hypothesized that maybe if they are involved in the same process, one turns on the other."

That turns out to be the case in C. elegans and may be true in more advanced organisms as well, he said.

A MODEL WORM ENABLES STUDIES

Scientists use the tiny worm called Caenorhabditis elegans to study such processes because it has a simple anatomy and life cycle. C. elegans develops from embryo through four larval stages into adulthood.

Each "stage" has specific programs of cell division, migration, differentiation and death that are crucial to the organism's final development. Particular master regulators in the worm determine each stage transition and are responsible for organizing developmental time.

"Expression of the let-7 family of microRNAs is dependent on the nuclear receptor and its hormone," Antebi said. "We can show in the worm and in cell culture that DAF-12 and its steroid hormone are directly activating these microRNAs."

HOW TRANSITIONS OCCUR

But how does this cause stage transitions? The tiny molecules called microRNAs work as switches to turn off other genes. In this case, the nuclear hormone receptor DAF-12 and its ligand turn on the microRNAs, which then turn off the earlier developmental "programming" of the cell (stage 2), allowing the later programming (stage 3) to take over.

Specifically, the microRNAs dial-back the activity of a protein called "hunchback," which specifies that the cells are in stage 2. That enables stage 3 to start and development to continue.

PROVIDES CANCER INSIGHTS

"We think this could also give insight into cancers," Antebi said, "particularly those that are hormone-dependent, such as breast or prostate cancer. When worm skin cells go from stage 2 to stage 3 they reduce their cell proliferation. When they fail this transition, skin cells overproliferate (grow uncontrollably)."

It is known that both nuclear receptors and microRNAs play a role in human cancers. These studies could help bridge understanding of the effects of the two.

LINKING DEVELOPMENT AND ENVIRONMENT

Antebi also thinks that this system links development to the environment. DAF-12 plays a role in a long-lived quiescent stage called the dauer diapause, which the worms enter in times of starvation and overcrowding.

"In good times, the DAF-12 steroid ligand is made, the microRNAs are turned on, and the worm goes through all stages of development to adult," said Antebi. (A ligand is a molecule that binds to the receptor to form a biologically active complex.)

"In bad times, the ligand is not made and the nuclear receptor (DAF-12) causes the animals to go into the long lived dauer stage, shutting down the microRNAs and the developmental clock," he said.

In this way, environmental signals actually affect the worm's rate of development, and perhaps even its aging, said Antebi.

Dipali Pathak | EurekAlert!
Further information:
http://www.bcm.edu
http://www.sciencemag.org/

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>