Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel spectroscopy technique reveals water molecule dance

07.03.2018

Scientists at the Max Planck Institute (MPI) for Polymer Research have developed the novel 2D TIRV spectroscopy technique to observe coupling between intramolecular and intermolecular vibrations that make water molecules “dance”.

Liquid water is permeated by a highly dynamic network of strong hydrogen bonds. Motions of molecules in this network underlie fundamental physical and chemical phenomena. Chemical processes like proton transfer and physical processes such as energy dissipation are guided by interaction between motions within molecules, and motions between molecules - comparable to an intricate collective molecular “dance”.


3-D model of liquid water (oxygen red, hydrogen white): Intra- and intermolecular vibrations of hydrogen bonds (green) let the whole network "dance".

© Max Planck Institute for Polymer Research

Recently, scientists at the Max Planck Institute (MPI) for Polymer Research in Mainz, Germany, have provided fundamental mechanistic insight into this coupling of internal and external molecular motions in water using a novel spectroscopy technique. They have developed the so-called two-dimensional, ultra-broadband terahertz-infrared-visible (2D TIRV) spectroscopy.

“We have combined infrared pulses with ultra-broadband terahertz pulses to develop this two-dimensional spectroscopy. This enables us to measure how the internal motion of a water molecule is directly coupled to the motions of the surrounding hydrogen-bonded network”, said Dr. Maksim Grechko, Group Leader at the MPI for Polymer Research.

Vibrational coupling clarified

By combining the experimental results provided by the 2D TIRV spectroscopy with cutting-edge molecular dynamics calculations Grechko and his co-workers have clarified the nature of the coupling between the intermolecular and intramolecular coordinates in the ensemble of water molecules.

They have found that change in the length of the bond between oxygen and hydrogen in a water molecule is directly coupled to two types of mutual motion of nearby water molecules. The first type of such intermolecular motions is associated with a change of the length of the hydrogen bonds connecting the molecules. And the second type is a complex umbrella-like motion of few water molecules together.

Significance of 2D TIRV spectroscopy for the future

These new results obtained by scientists at the MPI for Polymer Research are very important. Water is ubiquitous. It is the most common solvent and part of many chemical reactions in nature as well as, e.g. in industry. Water provides a unique environment for reactivity of dissolved chemical and biological molecules.

Professor Mischa Bonn, Director at the Max Planck Institute for Polymer Research and head of its Molecular Spectroscopy department, emphasized: „The newly developed 2D TIRV spectroscopy technique provides an exciting opportunity to gain new insights into the coupling between motions inside a molecule and collective motion of their molecule ensemble. We expect many new and stimulating discoveries from this spectroscopy in the future. ”

This novel spectroscopy technique can be used to reveal the heterogeneity and homogeneity of water near ions, osmolytes, and biomolecules such as proteins. Therefore, Grechko and his team continue their scientific work and technical development for further investigations into the structure and dynamic of water molecules.

Original article:
Maksim Grechko, Taisuke Hasegawa, Francesco D’Angelo, Hironobu Ito, Dmitry Turchinovich, Yuki Nagata, Mischa Bonn: Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy.
Nature Communications, Volume 9, Article number: 885 (2018)
DOI 10.1038/s41467-018-03303-y

About the Max Planck Institute for Polymer Research:
The Max Planck Institute for Polymer Research (MPI-P) ranks among the globally leading research centers in the field of polymer research since its foundation in 1984. The focus on soft materials and macromolecular materials has resulted in the worldwide unique position of the MPI-P and its research focus. Fundamental polymers research on both production and characterization as well as analysis of physical and chemical properties are conducted by scientific collaborators from all over the world. Presently over 500 people are working at the MPI-P, the vast majority of whom are engaged in scientific research.
http://www.mpip-mainz.mpg.de/home/en

Weitere Informationen:

http://www.mpip-mainz.mpg.de/5264656/pm2018-06
https://www.nature.com/articles/s41467-018-03303-y

Kerstin Felix | Max-Planck-Institut für Polymerforschung

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>