Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel molecular multi-step photoswitches caught in the act

09.05.2019

Infrared movies with quantum chemical subtitles unveil operating mechanism

Scientists from the University of Groningen, the University of Amsterdam, the University of Twente (all in the Netherlands) and the European Laboratory for Non-Linear Spectroscopy in Italy, have been able to follow the entire sequence of structural transformations in a new class of molecular switches for the first time.


These are two types of DASAs dropped into dichloromethane.

Credit: Dusan Kolarski/Michael Lerch

By identifying 'control knobs' to direct their operation, better control of their performance is now possible. The results were published in the print edition of the Journal of the American Chemical Society on 8 May (online on 10 April).

Molecules that change their structure when irradiated with light are key building blocks for molecular nanotechnology. Until now, switches have been used that typically revolve around one key spatial coordinate in the molecule, such as a double-bond isomerization or a ring opening. Switches that contain a different 'switchable' structure would considerably expand the versatility and application areas of such building blocks. There is consequently a quest for such novel chemical motifs.

Mystery

In recent years, Donor-Acceptor Stenhouse Adducts (DASAs) have emerged as a promising new photoswitching scaffold that could provide a more versatile switch. These molecules exhibit a more profound change of shape when switched. Furthermore, they are triggered by red light, which is more acceptable for medical applications than the energy-rich and potentially damaging ultraviolet light that is used in most molecular switches.

Only four years since their introduction, impressive examples of applications have already been reported in areas that range from material sciences to pharmacology. How DASAs are activated by light absorption has been characterized in detail. However, full switching also involves thermal steps, and it is still a mystery as to how these work.

Infrared movies

To investigate these thermal steps, which follow the initial photochemical step, Mark Koenis at the University of Amsterdam recorded how the molecules vibrate during switching by using rapid-scan Fourier Transform InfraRed spectroscopy. The frequencies of these vibrations provide a direct fingerprint of the molecular structure and thereby reveal the changes in the molecular shape that follow the light-induced switching. 'Following how the spectrum changes over time allows me to make a motion picture of how the molecule changes its structure after it has been activated' as Koenis puts it.

Quantum chemical subtitles

However, linking these spectra to specific changes in the molecular structure is not straightforward, as the molecular shape cannot be observed directly. Therefore, Habiburrahman Zulfikri (University of Twente) performed extensive quantum chemical calculations on all possible interconversion pathways, which enabled the identification of spectral features in the infrared movie as unique structural markers.

This theoretical work, the 'subtitles' to the spectra, led to surprising conclusions, says Zulfikri: 'The reaction mechanism is far more complex than we assumed, with many steps that until now had not even been considered.' One important observation is that apart from the 'on' and 'off' position, the molecule can end up in an 'in-between' state that is not useful and therefore reduce the efficiency of the molecular switch. This is very important for further development of DASA switches, he adds.

Zulfikri's findings were corroborated by Michael Lerch, who synthesized the switches. Lerch, who obtained his PhD last year under the supervision of Professors of Organic Chemistry Ben Feringa and Wiktor Szyman?ski at the University of Groningen, had performed spectroscopic studies of his DASAs but had not noticed the structural details now identified by Zulfikri: 'It is great that the calculations predict certain structural isomers that can be observed in the NMR experiments I did before. Since these are very small signals, they are easy to overlook, but on closer inspection, they were there.'

Instruction manual

Based on the studies, a number of principles have been identified with which the photoswitching outcome of DASAs can be steered along multiple switching pathways. Some of them are surprising. For example, the molecule can take different routes to move from the 'on' to the 'off' position, depending on the solvent. Also, the thermal steps are more important than in other light-activated switches.

The scientists involved in this study have confirmed that different changes occur in the molecule in different solvents. They also found a solvent that prevents the switch from getting stuck in the 'in-between' state. Now that the instruction manual of DASAs can be read, this offers exciting opportunities for novel switches with targeted properties.

###

Reference: Taming the complexity of donor-acceptor Stenhouse adducts: IR movies of the complete switching pathway; Habiburrahman Zulfikri, Mark A.J. Koenis, Michael M. Lerch, Mariangela Di Donato, Wiktor Szyman?ski, Claudia Filippi, Ben L. Feringa, Wybren Jan Buma; Journal of the American Chemical Society (2019).

Rene Fransen | EurekAlert!
Further information:
https://www.rug.nl/sciencelinx/nieuws/2019/05/20190508_dasas
http://dx.doi.org/10.1021/jacs.9b00341

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>