Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Antibody against Brain Tumors

22.06.2016

Scientists of Helmholtz Zentrum München and the Munich University Hospital (LMU) are developing a novel antibody to treat brain tumors. Now, with funding amounting to EUR 3.5 million approved by the Federal Ministry of Education and Research (BMBF) and the Helmholtz Validation Fund, the molecule shall undergo the first phase of clinical testing.

Glioblastoma is a very aggressive type of brain tumor. As a rule the cancer tissue is surgically removed as far as possible and the patient receives radiotherapy and/or chemotherapy. Nevertheless, due to the remaining cancer cells in the brain, the average survival time after diagnosis is only a few months.


Prof. Dr. Reinhard Zeidler, Source: Helmholtz Zentrum München / Sanni Fackler

A team of scientists led by Prof. Dr. Reinhard Zeidler, research group leader in the Research Unit Gene Vectors at Helmholtz Zentrum München and the Department of Otolaryngology of the Munich University Hospital (LMU) seeks to improve the treatment by means of a novel antibody.

Deadly delivery for tumor cells

The molecule named 6A10 specifically binds to the enzyme carbonic anhydrase XII, which is only found on cancer cells but not on healthy brain cells. It thus has two effects: first, it directly inhibits the enzyme, which is of great importance for the fast-growing tumor cells.

Second, the antibody is conjugated with lutetium-177, an isotope that is lethal for the tumor cells. The heavy metal is a beta-ray emitter and damages the cells in its immediate surroundings. Via the antibody, it reaches the remaining tumor cells directly.

Action at the tumor site

To deliver the antibody as highly concentrated as possible and as close as possible to the tumor site, the scientists plan to inject it directly at the site of the removed tumor tissue. By doing so, Zeidler and his partners Professor Hans-Jürgen Reulen, Professor emeritus of Neurosurgery at Munich University Hospital, and Dr. Franz-Josef Gildehaus from the Department of Nuclear Medicine at Munich University Hospital hope to delay or even prevent the recurrence of the disease.

“Together we have established a competent network of molecular biologists, neurosurgeons, nuclear medicine specialists, radiation physicist and radiopharmacists,” said project leader Zeidler. Both, the Department of Neurosurgery (director: Professor Tonn) and the Department of Nuclear Medicine (director: Professor Bartenstein) will play an important role in the planned clinical trials.

In the first phase, Zeidler and his colleagues want to lay the foundation for the clinical testing: “First, this involves proper production of the antibody in compliance with the mandatory law on drugs for human use.” This will be followed by the first tests on patients. As is usual in this phase, the scientists expect the initial study to have 12-15 participants who will receive the active agent.

“Our hope is that in the long term we can develop a new treatment option for glioblastoma patients” said Zeidler, looking ahead at the future. In addition to the hope of developing a successful treatment for brain tumors, Zeidler and his colleagues have their sights on other types of tumors. Since the target molecule carbonic anhydrase XII is also overexpressed in other cancer cells, it is conceivable that the molecule could be used against other forms of tumors such as lung cancer, according to the scientists.
„We hope that our project will serve as a good example that, also in an academic context, funding can help to bring scientific results from bench to bedside,” said project leader Zeidler.

Further information

Background:
The funding provided by the BMBF takes place within the framework of the VIP+ funding program for the “validation of the technological and societal innovation potential of academic research”. Its objective is to support scientists of all disciplines in taking the first step from the world of research towards economic value creation or social application.

The Helmholtz Validation Fund (HVF) is a funding instrument of the Hermann von Helmholtz Association of German Research Centres and is financed by funds from the Helmholtz President’s Initiative and Networking Fund. It aims to bridge the gaps between scientific findings and their commercial applications, between public research and private investment. In creating the Validation Fund, the Helmholtz Association seeks to minimize gaps in financing and to ease the transition from idea to application.

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Research Unit Gene Vectors studies EBV's molecular functions to understand how the virus contributes to different types of disease. The scientists analyse the immune system of virus carriers to find out how EBV and other herpes viruses are kept in check, and why immune control has failed in patients with disease. They also investigate the origins of cancers of the immune system - lymphoma and leukaemia – and develop new antibodies for therapies and diagnostics. Their ultimate goal is to develop new drugs, vaccines and cell-based therapies in order to efficiently treat or – preferentially – prevent infectious diseases and cancer. http://www.helmholtz-muenchen.de/en/agv

Munich University Hospital (LMU) treats around 500,000 outpatients, inpatients and semi-residential patients each year at its Großhadern and City Centre Campuses. Just over 2,000 beds are available to its 28 specialist clinics, twelve institutes and seven departments, and its 47 interdisciplinary centres. Of a total of 9,500 employees, around 1,600 are doctors and 3,200 are nursing staff. Munich University Hospital has been a public-law institution since 2006. Together with the Medical Faculty of Ludwig Maximilians University, Munich University Hospital is involved in four special research areas of the German Research Foundation (SFB 684, 914, 1054, 1123), three Transregios (TRR 127, 128, 152) belonging to Clinical Research Group 809, and two Graduate Colleges belonging to the German Research Foundation (GK 1091, 1202). This is in addition to the Center for Integrated Protein Sciences (CIPSM), Munich Center of Advanced Photonics (MAP), Nanosystems Initiative Munich (NIM) and Munich Cluster for Systems Neurology (SyNergy) – all institutes of excellence – and the Graduate School of Systemic Neurosciences (GSN-LMU), the Graduate School of Quantitative Biosciences Munich (QBM) and the Graduate School Life Science Munich (LSM). http://www.klinikum.uni-muenchen.de

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Prof. Dr. Reinhard Zeidler, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Gene Vectors, Research Group Prevention and Immunomodulation, Marchioninistraße 25, 81377 München - Tel. +49 89 3187 1401, E-mail: zeidler@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/en/news/latest-news/press-information-news/article/35075/index.html

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Antibody BRAIN Environmental Health Helmholtz cancer cells tumor cells tumors

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>