Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017

Over the next few years, in a research project funded by the EU, an international consortium is developing a new technology for a better treatment of multiple sclerosis. The idea of the innovative “Nose2Brain” approach is to transport a special active substance directly through the nose into the central nervous system. For this purpose, the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB is working on an active ingredient formulation which is introduced direct into the Regio olfactoria by means of a special applicator and which can release the active ingredient there over a prolonged period of time.

Medically active substances are normally distributed via the blood – either directly by injection into the bloodstream or indirectly, for example through the digestive tract after oral administration. In many diseases, however – for example of the central nervous system – it is of decisive importance to transport the active substance as efficiently as possible to the required target site.


At the start of the project the N2B consortium met at Fraunhofer IGB in Stuttgart.

Fraunhofer IGB

An example of this is the treatment of multiple sclerosis, where the pharmaceutical agents have to produce their effect above all in the central nervous system. However, this is especially difficult to achieve in the usual way via the blood due to special protective mechanisms such as the blood-brain barrier.

Through the nose direct into the brain

Within the scope of the EU-funded “N2B patch” cooperative project, Fraunhofer IGB is therefore participating in the development of a medical form of therapy that delivers the drug via the Regio olfactoria. The aim of this alternative approach is to enable an active substance to circumvent the path through the bloodstream and to reach the brain directly. Here the brain, together with the surrounding liquid, is only separated from the nasal cavity by the ethmoid bone and some cell layers.

The active agent can easily penetrate this barrier and reach the brain directly taking a short route. The therapeutic system will consist of the active agent itself, of a formulation containing the active agent, a hydrogel as carrier material for the formulation, and a suitable applicator for inserting the patch in the nose. The active agent is a biomolecule that stimulates the regeneration of nerve cells.

In the project the scientists at Fraunhofer IGB are concentrating on the formulation of the particles containing the active agent, and on inserting these particles into the gel. The project consortium is developing a special applicator to introduce the gel into the nose. The device is a combination of a standard endoscope and a special mixing system.

This system is necessary as the target site is difficult to reach and an already solidified gel could not be deposited in the correct place. The liquid precursors of the gel therefore have to be transported separately to the olfactory epithelium inside the nose. There the various components combine to form a gel with the required consistency, so that the patch remains securely in place.

As the olfactory epithelium is difficult to reach, the gel patch should be applied by a doctor, not by the patients themselves. The active agent will then be released over an extended period of time, so there is then no need to remove the patch again. A new one is simply inserted in the case of long-term treatment.

EU funds Nose2Brain project for four years

The N2B patch project is supported financially by the EU within the scope of the tender procedure “Biomaterials for diagnosis and treatment of demyelination disorders of the central nervous system”. A total of eleven partners from research and industry are participating in the project, which is scheduled to last four years and will be completed at the end of 2020. The special focus of the participating researchers is on the treatment of multiple sclerosis; however, they also hope to develop other fields of application for the N2B platform.

Weitere Informationen:

https://www.igb.fraunhofer.de/en/press-media/press-releases/2017/nose2brain-_-be...

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>