Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nonstop Tranport of Cargo in Nanomachines

20.11.2018

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks are cilia, antenna-like structures protruding from most vertebrate cells.


Cryo-electron microscopy reveals the structure of intraflagellar transport nanomachines (yellow, green) and the inhibitory mechanism of the dynein motor (blue)

Jordan et al. Nature Cell Biology / MPI-CBG / Illustration: Bara Krautz

Whenever cilia fail to assemble correctly, their malfunctions can cause numerous human diseases. The assembly and maintenance of cilia requires a bidirectional transport machinery known as Intraflagellar Transport (IFT), which moves in train-like structures along the microtubular skeleton of the cilium.

Not only the structure of IFT trains was, so far, unknown, but also how the two types of oppositely directed molecular motors, kinesin and dynein, are prevented from interfering with each other, resulting in a smooth and constant motion of IFT trains.

The research group around Gaia Pigino at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden solved those two unanswered questions using cryo-electron microscopy and published their findings in the journal Nature Cell Biology.

As humans, we rely on senses like hearing, seeing, tasting, or smelling in order to explore our environment. At the level of single cells, sensing our environment happens through antenna-like structures, known as cilia.

A cilium can convert light, chemical, and mechanical stimuli into molecular signals that the cell interprets and responds to. Additionally, cilia enable cells to communicate and move.

These sensory, signaling, and motility functions of cilia explain why their malfunctions can cause such a wide range of human diseases, including retinal degeneration, polycystic kidney disease, Bardet-Biedl syndrome, or congenital heart disease. Given this crucial role, it is critical for the cilium to assemble properly.

The cilium self-organizes out of numerous components, which are transported on little molecular machines called IFT trains. These trains move along the microtubular skeleton of the cilium and deliver molecular building blocks to the growing tip of the cilium before they head back to the cell body.

This is the fastest and most efficient transport system ever observed inside cells. In 2016, the lab of Gaia Pigino has discovered that cells prevent collisions during IFT by positioning trains that go in opposite directions on different microtubule rails.

Still, some questions remained after their study from 2016: How exactly does the molecular structure of IFT trains look like? How are the two types of IFT molecular motors, kinesin and dynein, regulated?

Those motor proteins are pulling the IFT train along the tracks: while kinesins bring cargo-loaded trains to the tip of the cilium, dyneins pull trains back to the cell body. Mareike Jordan, the first author of the study, explains:

“We didn’t know how dynein was able to get to the tip of the cilium without pulling the train in the opposite direction. This would lead to a tug-of-war competition between dyneins and kinesins, leading to non-smooth transport. By finding out how trains moving towards the ciliary tip are structured, we were able to reveal how dyneins are loaded onto trains as cargoes. Two mechanisms prevent a tug-of-war: dyneins are carried piggyback on IFT trains to be held distant from the microtubule rail and their legs are crossed to impair walking. Once at the ciliary tip, dyneins are released, get activated and used to pull trains back towards the cell body.”

The key technique enabling these discoveries was cryo-electron microscopy (cryo-EM), a method that uses electrons, instead of light, to image fast-frozen biological samples, such as proteins in their cellular environment, and obtain 3D models of their molecular structure.

“With the cryo-EM here at the MPI-CBG, we were able to visualize the intraflagellar transport machines in their natural context inside the cell”, says Gaia Pigino, who oversaw the study. She concludes: “This study reveals important mechanisms cells require for robust ciliary assembly. Our work on the molecular structure and function of the IFT machinery is important to understand the many cilia-related human pathologies.”

Wissenschaftliche Ansprechpartner:

Gaia Pigino
+49 (0) 351 210 2450
pigino@mpi-cbg.de

Originalpublikation:

Mareike A. Jordan, Dennis R. Diener, Ludek Stepanek & Gaia Pigino: The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nature Cell Biology, October 15, 2018, https://doi.org/10.1038/s41556-018-0213-1

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik
Further information:
https://www.mpi-cbg.de/de/home/

More articles from Life Sciences:

nachricht Pinpointing Pollutants from Space
15.11.2019 | Max-Planck-Institut für Chemie

nachricht Chemists use light to build biologically active compounds
15.11.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New laser opens up large, underused region of the electromagnetic spectrum

15.11.2019 | Power and Electrical Engineering

NASA sending solar power generator developed at Ben-Gurion U to space station

15.11.2019 | Power and Electrical Engineering

Typhoons and marine eutrophication are probably the missing source of organic nitrogen in ecosystems

15.11.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>