Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nonstick coating of a protein found in semen reduces HIV infection

24.09.2010
A non-stick coating for a substance found in semen dramatically lowers the rate of infection of immune cells by HIV a new study has found.

The new material is a potential ingredient for microbicides designed to reduce transmission of HIV, a team from the University of Rochester Medical Center and the University of California, San Diego reports in a forthcoming issue of the Journal of Biological Chemistry.

The coating clings to fibrous strings and mats of protein called SEVI–for semen-derived enhancer of viral infection–which was first discovered just three years ago. SEVI seems to attract the virus and deposit it onto the surface of T-cells, components of the immune system that are the primary target of HIV infection, and may play an important role in sexual transmission of HIV.

Like the fibrous strings that bind senile plaques associated with Alzheimer's disease, SEVI is a kind of protein superstructure called an amyloid.

Jerry Yang, associate professor of chemistry at UC San Diego and his research group developed non-stick coatings for amyloids as a potential treatment for Alzheimer's disease in 2006. Their idea was to minimize damage by preventing amyloid proteins from interacting with other molecules in the brain.

When this new amyloid, SEVI, was discovered in 2007, Yang was interested in testing whether the coating strategy might interfere with SEVI's role in promoting HIV infection.

Yang's group teamed up with a researchers led by Stephen Dewhurst, chair of the microbiology and immunology department at the University of Rochester Medical Center, who studies HIV.

"We tested one of our molecules out on SEVI and found it was able to stop SEVI-enhanced infection of HIV in cells," Yang said. "It works in semen too. Something in semen enhances viral infection – SEVI and maybe other things. This molecule stops that."

When the researchers added the molecule that forms non-stick coatings to a mix of SEVI, virus and cells, rates of infection dropped to levels observed when SEVI was absent. They saw a similar effect with semen as well, evidence that this potential microbicide supplement works to inhibit infection within a mixture of proteins and other molecules found in seminal fluid.

The coating molecule is a modified form of thioflavin-T, a dye that stains amyloid proteins. It fits in between the individual small proteins that cluster to form SEVI and blocks SEVI's interactions with both the virus and the target immune cells.

"Other people have tried to do the same thing by targeting the virus or the cells it infects. What we do is target the mediator between the virus and the cells," Yang said. "By neutralizing SEVI, we prevent at least one way for HIV to attach to the cells."

The new molecule has another advantage. Unlike many current microbicide candidates aimed at reducing HIV infection, this one doesn't cause inflammation in cervical cells.

"Recent studies have shown for the first time that a topical microbicide gel can protect women from HIV-1 infection. This is a huge step forward but not a perfect solution. We need to figure out ways to further improve protection - and our studies suggest one way of doing so," said Dewhurst, who is the corresponding author of the report. "It may be possible to produce a next-generation microbicide that includes both an antiviral agent, as has been used in the past, and an agent that targets SEVI. We're very excited about exploring this idea."

The National Institutes of Health and the National Science Foundation funded this work.

Additional co-authors include Joanna Olsen, Caitlin Brown, Todd Doran, Rajesh Srivastava, Changyong Feng and Bradley Nilsson of the University of Rochester, and Christina Capule and Mark Rubinshtein of the University of California, San Diego.

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>