Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noninvasive MR imaging of blood vessel growth in tumors using nanosized contrast agents

26.07.2010
Formation of new blood vessels, also known as angiogenesis, is crucial for sustained tumor growth and cancer metastasis.

Recently, clinically available therapies to suppress the growth of these vessels have been available to improve patient survival in some cancer types. Accurate detection and quantification of blood vessel growth using nonsurgical methods would greatly complement current therapies and allow physicians to quickly assess treatment regimens and adjust them as necessary.

In the work published in the August issue of Experimental Biology and Medicine, Kessinger and coworkers have incorporated nanotechnology, material science, and the clinical imaging modality MRI, to create a nanosized probe capable of noninvasively visualizing and quantifying the blood vessel growth in tumors in a preclinical model. The work was carried out by Chase Kessinger, as part of his PhD thesis in cancer molecular imaging, working together with Jinming Gao and other colleagues, at the University of Texas Southwestern Medical Center at Dallas.

Dr. Gao stated "Imaging tumor angiogenesis is important in early detection, tumor stratification and post-therapy assessment of antiangiogenic drugs. Current clinical modality for angiogenesis imaging utilizes dynamic contrast enhancement MRI by small molecular contrast agents. The method is based on the measurement of permeability of the contrast probes in well-established solid tumors and is not very specific to detect the early on-set of vessel formation. The dual functional nanoprobes aim to image angiogenesis-specific tumor markers that are overly expressed in the tumor vasculature during the early phase of angiogenesis."

Together, the research team relied on nanotechnology and established super paramagnetic micellar nanoprobes (50-70 nm in diameter) with greatly improved MRI sensitivity over conventional small molecular agents. The nanoprobe surface was functionalized with integrins that are a cyclic peptide that can specifically bind to overexpressed on the tumor endothelial cells. The nanoprobes also had a fluorescent moiety used for the validation of targeted delivery to the tumor endothelial cells. Studies in cancer cells validated the increased uptake of nanoprobes compared to non-targeted-nanoparticles. In collaboration with Dr. Masaya Takahashi and coworkers in the Advanced Imaging Research Center at UT Southwestern Medical Center, the research team employed a 3D high resolution acquisition method to visualize the accumulation of the micelle nanoprobes in tumors.

Dr. Gao said "Conventional image analysis of angiogenesis relies on the evaluation of 'hot spot' densities in 2D images. The 3D high resolution method allowed for the connection of the isolated 'hot spots' in 2D slices into 3D network structures, which greatly improves the accuracy of vessel identification and quantification."

In preclinical animal tumor models, MR imaging of the targeted contrast probes yielded vascularized network structures in 3D tumor images. The enhanced visualization allowed for a more accurate quantification of tumor angiogenesis. The results showed significant increase of contrast specificity of angiogenic vessels by the targeted nanoprobes over non-targeted micelles. These targeted nanoprobes may provide a useful contrast probe design for the clinical diagnosis of tumor angiogenesis.

Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "Kessinger et al working at the interface of nanotechnology, material science, and the clinical imaging modality MRI have created a nanosized probe capable of noninvasively visualizing and quantifying the blood vessel growth in tumors in a preclinical model. This should be an important tool for clinical observation of tumor angiogenesis".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit www.ebmonline.org.

Dr. Jinming Gao | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>