Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-destructive testing methods cannot securely expose fake art

18.03.2014

Analysis methods are only capable of clearly detecting fakes when non-anachronistic materials are detected in artefacts. However, if the forgers have used substances whose contemporary use is described, for example, historical paper is used for printing and painting in the forgery of a book, materials science cannot provide evidence of a forgery.

This happened in the scientific investigation of the “star messenger”, Sidéreus Nuncius, a 60-page study from 1610 with supposedly hand-painted Moon illustrations by Galileo Galilei. The volume emerged in 2005 in the New York antiquarian bookshop Martayan-Lan and was regarded as a sensation. Today the book is known to be a fake.

"Material analysis is only capable of unmasking a fraud when the forger makes use of materials which were used only after the date of origin of the supposed original," says Oliver Hahn, head of the Division of Arts and Cultural Analysis at the BAM Federal Institute for Materials Research and Testing and co-author of the third Galileo volume with the title:

A GALILEO FORGERY. UNMASKING THE NEW YORK SIDEREUS NUNCIUS. In this third volume to be published on the 450th anniversary of Galileo Galilei (15 Feb.1564 – 29 Dec. 1641), the Galilei team of researchers, composed of experts from the fields of art, books, science, materials science and restoration history, correct their own results of the first two volumes.

Faced with the statement that this Sidéreus Nuncius copy is a fake, BAM have re-examined their data from previous studies and supplemented them with further tests on the paper and printer's ink. These tests were carried out according to previous measurement campaigns, with the requirement that no physical sampling was made.

"We were of course aware when performing the measurements that non-destructive tests can provide less accurate findings than methods based on sampling. But the book was still considered unique and was supposed to remain untouched,." says Hahn.

The New York Sidéreus Nuncius was not the only item tested by the BAM research team but also contemporary comparative pieces. The most important piece was the Sidéreus Nuncius of Graz, which is considered to be an authentic object.

The researchers tested the chemical composition of the paper and the printer’s ink using various non-destructive spectroscopic methods. The measurement results from the forgery (New York), and the original (Graz) showed none or only a slight difference, which makes the evaluation of authenticity very hard.

Although the X-ray fluorescence analysis of the printer’s ink shows slight differences in the elemental composition, this is no proof that the printer’s ink in the New York copy is a modern preparation. Both printer‘s inks are chiefly composed of organic materials. A non-destructive analysis of printer's ink, i.e. a substance composed of a binder and elemental carbon, is not sufficiently conclusive at the current state of science and technology.

Another opportunity to prove the authenticity of the volume is to determine the age of the paper and the printer's ink. The method of choice is the familiar C14 method. It is based on the fact that the three carbon isotopes 12C, 13C and 14C are bound in dead organic materials such as paper and printer's ink and the number of radioactive 14C atoms decreases according to the law of radioactive decay. The older the material, the lower the measured radioactivity. But even this method requires samples to be taken, which of course had to be avoided in the tests.

The investigation by the BAM Sidéreus Nuncius experts showed that the proof of authenticity of a cultural asset is not easy, especially if the counterfeiters have used contemporary materials.

Contact:
Dr. rer. nat. Oliver Hahn
Department 4 Material and Environment
Email: Oliver.Hahn@bam.de

Dr. Ulrike Rockland | idw - Informationsdienst Wissenschaft
Further information:
http://www.bam.de

Further reports about: Arts BAM Contact Galileo accurate composition findings materials measurement pieces sampling showed volume

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>