Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noisy cell membranes

25.10.2017

Rapid information transfer is vital for the inner workings of body tissues. With computer simulations, researchers from Colombia and Germany found that mechanical pulses travel through membranes for biologically relevant distances at the speed of sound. The researchers think that membranes could serve as a tin can telephone for the cell.

Biological membranes are essential for any form of life. They are the wrapping for the precious molecules of life inside the cell. Membranes also contain many important molecules themselves, such as lipids arranging as a bilayer and proteins embedding into such bilayer, which allows tightly controlled information exchange with the outside.


Could membranes be a kind of tin can telephone for the cell?

Dimj/Shutterstock.com

Cells and thus their membranes are constantly pushed and pulled by their neighboring cells, while cells divide, communicate, move, or die.

Researchers have long been wondering whether such poking mechanical forces could propagate along the membrane just like sound waves.

In a recent study, Camilo Aponte-Santamaría from the University of los Andes in Bogotá, Colombia, and Jan Brunken and Frauke Gräter from the Molecular Biomechanics group at the Heidelberg Institute for Theoretical Studies (HITS), Germany, used computer simulations to demonstrate that mechanical pulses propagate through membranes at very high speeds of kilometer per second comparable to the speed of sound.

Chasing these fast, noisy and tiny pulses in the computer has been a particular challenge for researchers so far. Aponte-Santamaría, Brunken, and Gräter therefore developed tailor-made Force Distribution Analysis.

This analysis allowed to find out that a pulse can travel for tens of nanometers so that it reaches many biomolecules embedded in the membrane within as little as one millionth of one millionth of a second, before attenuation.

Rapid information transfer across cells is vital for the inner workings of our tissues, from brain to muscle. The researchers think that the traveling of pulses through membranes could be a kind of tin can telephone for the cell. The actual nature and role of such ultrafast information transfer, however, remains to be tested in future experimental studies.

Publication: Camilo Aponte-Santamaría, Jan Brunken, and Frauke Gräter. Stress propagation through biological lipid bilayers in silico. JACS communication. DOI: 10.1021/jacs.7b04724. (2017).

Scientific Contact:

Dr. Camilo Aponte-Santamaría
Group Leader
Max Planck Tandem Group in Computational Biophysics
Universidad de los Andes
Bogotá, Colombia
E-mail: ca.aponte@uniandes.edu.co

Prof. Dr. Frauke Gräter
Group Leader „Molecular Biomechanics“
Heidelberg Institute for Theoretical Studies
Schloß-Wolfsbrunnenweg 35
69118 Heidelberg, Germany
E-mail: frauke.graeter@h-its.org

Press Contact:
Dr. Peter Saueressig
Head of Communications
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49 6221 533 245
peter.saueressig@h-its.org

About HITS

The Heidelberg Institute for Theoretical Studies (HITS) was established in 2010 by the physicist and SAP co-founder Klaus Tschira (1940-2015) and the Klaus Tschira Foundation as a private, non-profit research institute. HITS conducts basic research in the natural sciences, mathematics and computer science, with a focus on the processing, structuring, and analyzing of large amounts of complex data and the development of computational methods and software. The research fields range from molecular biology to astrophysics. The shareholders of HITS are the HITS Stiftung, which is a subsidiary of the Klaus Tschira Foundation, Heidelberg University and the Karlsruhe Institute of Technology (KIT). HITS also cooperates with other universities and research institutes and with industrial partners. The base funding of HITS is provided by the HITS Stiftung with funds received from the Klaus Tschira Foundation. The primary external funding agencies are the Federal Ministry of Education and Research (BMBF), the German Research Foundation (DFG), and the European Union.

Dr. Peter Saueressig | idw - Informationsdienst Wissenschaft
Further information:
http://www.h-its.org/

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>