Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No sex for all-female fish species

12.02.2018

They reproduce through gynogenesis. Their offspring are clones of the mother. According to established theories, the Amazon molly should have become extinct a long time ago. A new study shows how the fish avoids this fate.

Species that produce asexually are rare among vertebrates, making the Amazon molly (Poecilia formosa) the big exception. The small fish species, who is native to the border region of Texas and Mexico, does not produce any male offspring. The females reproduce asexually through gynogenesis, making their daughters identical clones of themselves.


The Amazon molly does not produce any male offspring. The females reproduce asexually through gynogenesis. Nevertheless they need sperm to trigger the cloning process.

Foto: Manfred Schartl

This type of reproduction also means that they need sperm to trigger the cloning process. So the Amazon molly mates with closely related Molly fish to obtain this sperm. The sperm cells even penetrate the egg cell; however, none of the male’s DNA is incorporated into the Molly’s eggs. Rather, the egg completely destroys the male genes.

"According to established theories, this species should no longer exist. It should have long become extinct during the course of evolution," Manfred Schartl explains. The biochemist holds the Chair of Physiological Chemistry at the Biocenter of the University of Würzburg.

Schartl with an international team of researchers explored how the Amazon molly has managed to survive in spite of this. For this purpose, the researchers sequenced the genome of the fish species and compared it with that of related species. The results of their research are published in the current issue of the journal Nature Ecology & Evolution.

Contradictory to established theories

There are two main reasons that argue against asexually reproducing species surviving in the long run: "Harmful changes occur in any genome at some point. In creatures whose offspring are pure clones, these defects would accumulate over generations until there are no more healthy individuals," Schartl explains. Species that reproduce sexually can easily eliminate such defects when the number of chromosomes is reduced by half during formation of egg and sperm cells to be recombined subsequently during fertilization from half of the maternal and paternal chromosomes, respectively.

There is another argument against the long survival of a species whose offspring are all clones of their mothers: "These species are usually not capable of adapting to environmental changes as quickly as their sexually producing counterparts," Schartl says. So within a few generations, they should be on the losing side of evolution which calls for the "survival of the fittest".

Unique genetic variability

To answer the question why this theory does not apply to the Amazon molly, the scientists studied their genome as well as that of two related fish species that reproduce sexually. The main insight: "We found little evidence of genetic degeneration in the Amazon molly, but rather a unique genetic variability and clear signs of an ongoing evolutionary process," Manfred Schartl says and he continues to explain that especially the genes relevant for the immune system exhibit a high level of genetic variability in the genome of P. formosa.

From this the authors of the study conclude that this variability combined with a broad immune response essentially contributes to the fact that the Amazon molly does not share the fate of many other species that reproduce asexually, namely to fall victim to pathogens.

Further results of the study
• Comparing the genome of the related fish species P. formosa, P. latipinna and P. mexicana shows that the differences are minor. All three carry 25,220 protein-encoded genes.
• Surprisingly, the genome of P. formosa also contains genes which a female fish does not need, for example genes for spermatogenesis, the development of males or the meiosis of egg and sperm cells.
• The absence of major genetic damages cannot be explained by the fact that P. formosa developed only a few generations ago. A look inside the genome shows that the species probably evolved some 100,000 years ago. With a new generation born every three to four months, this amounts to about 500,000 generations since P. formosa first existed, which is much longer than what standard theories predict as the time until extinction. By the way, this is also many generations more than Homo sapiens can look back on.
• P. formosa probably participates in evolutionary processes as well, however, within the boundaries of a selection process of naturally occurring mutations and the competing clones. In this respect, asexual reproduction even proves beneficial for the Amazon molly: Without the expense involved in maintaining two sexes, the fish population can grow more rapidly and achieve a significant size.
• All known vertebrates that reproduce asexually are hybrids – two specimens of P. latipinna and P. mexicana were the "parents" of Amazon molly. The scientists therefore assume that a hybrid genome is the driving force behind such species staying fit. This, however, requires the hybrid genes to be compatible with each other - which is rarely the case.
• Researchers propose a new theory called "rare-formation hypothesis" to explain the chances of survival of asexually reproducing species to replace the old theories. According to this theory, asexual species are rare not because they are inferior to other species but because the conditions for a hybrid genome, which is crucial to survive and reproduce successfully, are so specific.

Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nature Ecology & Evolution http://dx.doi.org/10.1038/s41559-018-0473-y

Contact
Prof. Dr. Manfred Schartl, T: +49 (0)931 31-84149, phch1@biozentrum.uni-wuerzburg.de

Corinna Russow/Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>