Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrate as an antiperspirant

19.05.2011
Rising levels of nitrate and of the hormone abscisic acid signal to a plant that it needs to conserve water. How do these two transmitters achieve their effect? Plant researchers Rainer Hedrich and Dietmar Geiger from the University of Würzburg have found the answer.

If soil dries out, plants have to restrict their water consumption. To do this, they produce the hormone abscisic acid in their roots and send it along the vascular system to the leaves. Once there, the hormone works in conjunction with nitrate to ensure that the leaf pores, or stomata, close and thereby prevent the loss of any more valuable water through evaporation.

The main way in which plants lose water is through their stomata. Yet, these pores are indispensable, as without them plants would be unable to exchange carbon dioxide and other gases with the environment and, as a result, photosynthesis would not be possible, nor would growth. Plants therefore have to regulate the extent to which their stomata open to suit their needs.

Guard cells regulate leaf pore width

Whether stomata are closed or open depends on bean-shaped guard cells. These are found in the epidermis of the leaves, always with two lying opposite each other. When the guard cells are bulging with ions and water, they part and open the pore. As they go limp, the pore becomes smaller and smaller until finally this water vapor valve is completely closed.

During times of drought, the guard cells become the destination for the hormone abscisic acid. “Upon its arrival there, it binds to its receptor, which, in turn, regulates the anion channel SLAC1 via two enzymes,” says Professor Rainer Hedrich. As a consequence, ions and water flow out from the guard cells. This reduces the pressure somewhat, causing the pores to close and limiting the evaporation of water from the leaves.

Publication in “Science Signaling”

New findings relating to this regulatory mechanism are presented by Professor Rainer Hedrich and Dr. Dietmar Geiger from the Department of Molecular Plant Physiology and Biophysics at the University of Würzburg in the current issue of the renowned journal “Science Signaling”. They describe in detail the nature of the anion channel SLAC1 as well as that of the newly discovered anion channel SLAH3. What is special about this channel is that it requires both abscisic acid and nitrate for its activation.

Nitrate as a co-transmitter with abscisic acid

Nitrate is known mainly as a component of agricultural fertilizer. Plants draw nitrate from the soil, transport it to the leaves, and use it there as a source of nitrogen for protein production. This process really gains momentum when photosynthesis is at its peak because it supplies the carbon structure used by the plant as a basic building block for proteins. When photosynthesis is working well, the leaves are also capable of processing a lot of nitrate.

Nitrate finds its way from the roots to the leaves dissolved in water. The plant can tailor its nitrate replenishment to meet its needs by increasing or restricting the flow of water. It does this by opening or closing its valves, enabling it to regulate the pull that is exerted by water evaporating via the leaves right down into the roots.

Guard cells measure nitrate content in the leaf

“For this regulation to work, the guard cells must be capable of measuring the nitrate content in their vicinity,” says Professor Hedrich. If the nitrate content in the leaf rises sharply, this signals to the plant that it cannot process any more nitrate for the time being because photosynthesis is not working optimally. It is able to do without carbon dioxide at this time, and the stomata close, thereby conserving water. In this case, nitrate acts as an antiperspirant.

The Würzburg biophysicists have identified the anion channel SLAH3 as the sensor for the process. If the nitrate content in the guard cells exceeds a certain threshold and, at the same time, there is a critical quantity of abscisic acid, the channel is activated and sets the closure of the leaf pores in motion.

Anion channel as a multisensory regulator

Hedrich draws the following conclusion: “This anion channel is a multisensory interface. It measures the ratio of water consumption, nitrate content, and photosynthetic performance of the plant, integrates the measurements, and regulates the aperture of the stomata in response.” It enables the plant to keep the loss of water down to a minimum during times of drought without excessively restricting the photosynthetic performance at the same time.

"Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1”, Dietmar Geiger, Tobias Maierhofer, Khaled A.S. AL-Rasheid, Sönke Scherzer, Patrick Mumm, Anja Liese, Peter Ache, Christian Wellmann, Irene Marten, Erwin Grill, Tina Romeis und Rainer Hedrich, Science Signaling, 17. Mai 2011, Vol. 4, Issue 173, DOI: 10.1126/scisignal.2001346

Contact

Prof. Dr. Rainer Hedrich, T +49 (0)931 31-86100, hedrich@botanik.uni-wuerzburg.de

Dr. Dietmar Geiger, T +49 (0)931 31-86105, geiger@botanik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: SLAC1 SLAH3 Signaling abscisic acid carbon dioxide nitrate water consumption

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>