Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation medication: where chemistry meets computation

31.07.2019

A group of Japanese researchers mainly from Tokyo University of Agriculture and Technology (TUAT) and Hokkaido University drastically enhanced and sped up the way to skeletally diverse indole alkaloids, composed of the medicinally-relevant scaffolds. By leveraging computational and synthetic approaches, this group has successfully developed a concise and versatile synthetic process generating the densely-functionalized multicyclic complex scaffolds, which would facilitate the development of both medicine and agrochemicals.

This synthetic approach employing zing (II) reagent in place of Hg(II) or Gold-based reagents are also environmentally friendly as well as much cheaper than those that were used to-date.


An artist's depiction of the programmable divergent synthesis process.

Credit: Hiroki Oguri, TUAT

The research was published in Chemical Science on May 1st, 2019.

Plants and fungi that contain indole alkaloids have a long history of use in traditional medicine. In efforts to synthesize the complex alkaloids, chemists usually develop a customized synthetic strategy for efficient construction of the single targeted scaffold.

In contrast, this synthetic approach allowed concise and divergent synthesis of skeletally diverse alkaloidal scaffolds employing a common multipotent intermediate upon activation of alkyne moiety with zinc (II) reagent.

"We have successfully achieved programmable synthesis of the four distinct alkaloidal skeletons by implementing divergent annulations. The four kinds of annulation modes were demonstrated to be controlled in a programmable manner by appropriate choices of the substituents in the vicinity of the reaction centers, optimization of solvents and reaction conditions." says Hiroki Oguri, PhD, corresponding author and Professor at the Department of Applied Chemistry, Graduate School of Engineering, TUAT, Japan.

By integrating computational and experimental investigation methods, the researchers were able to not only gain insight into the reaction mechanism proposing unique transition states, but also to showcase a useful synthetic strategy for the concise and divergent access to the medicinally-relevant alkaloidal structures.

"These experimental findings underscore that Zn(OTf)2-mediated activation of alkynes provide relatively unexplored but versatile synthetic methodologies for the direct and flexible synthesis of alkaloidal scaffolds reminiscent of natural products," Oguri adds.

The researchers plan to implement their methods to create compounds other than just indole alkaloids, and they envision that their method could offer both rational and unexpected guidelines for designing other similar reactions.

Integration of synthetic strategies for generating structural variations with a systematic computational approach for identifying unforeseen reaction pathways could provide a new route for advancing the combinatorial chemical synthesis of functional molecules. They also expect that this method will generate lead candidates for the development of next-generation pharmaceuticals and pesticides.

###

This research was supported by the Japan Science and Technology Agency (JPMJPR13K3), the Japan Society for the Promotion of Science (KAKENHI Grant No. 15H03117, Grant No. JPMJCR14L5), the Asahi Grass Foundation, and Astellas Foundation for Research on Metabolic Disorders.

For more information about the Oguri laboratory, please visit http://web.tuat.ac.jp/~h_oguri/en/index.html

About Tokyo University of Agriculture and Technology

Tokyo University of Agriculture and Technology (TUAT) is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/

Original publication:

Sadaiwa Yorimoto, Akira Tsubouchi, Haruki Mizoguchi, Hideaki Oikawa, Yoshiaki Tsunekawa, Tomoya Ichino, Satoshi Maeda and Hiroki Oguri*
"Zn(OTf)2-mediated annulations of N-propargylated tetrahydrocarbolines: divergent synthesis of four distinct alkaloidal scaffolds"
Chemical Science 2019, 10, 5686-5698.

DOI: 10.1039/c9sc01507h

Contact:

Hiroki Oguri, Ph.D., Professor,
Department of Applied Chemistry,
Graduate School of Engineering, TUAT, Japan.
h_oguri@cc.tuat.ac.jp

Satoshi Maeda, Ph.D., Professor,
Department of Chemistry, Faculty of Science,
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Japan.
smaeda@eis.hokudai.ac.jp

Media Contact

Yutaka Nibu, PhD
yutakanibu@go.tuat.ac.jp
81-423-887-550

http://www.tuat.ac.jp/en/ 

Yutaka Nibu, PhD | EurekAlert!
Further information:
http://dx.doi.org/10.1039/c9sc01507h

Further reports about: Applied Chemistry Next-generation synthesis synthetic

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>