Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

News on Immunotherapy

01.03.2013
Some T cells of the immune system are natural enemies of cancer cells. How they are prepared for their deployment in the organism appears to be very decisive in determining their effectiveness in cancer treatment.
Many T cells of the immune system have the general ability to identify and destroy tumor cells. For this reason, medical scientists are trying to use the powers of T cells in cancer treatment. Many research institutions worldwide are working on such immunotherapies and the University of Würzburg also has some projects in this field.

Matthias Wölfl, senior physician at the Department of Pediatrics of the University Hospital, is one of the Würzburg T cell experts. Working as a postdoctoral researcher in the USA, he participated until 2007 in a project that explored the use of T cells against leukemia. The promising results of the project are now published in the prestigious journal "Science Translational Medicine".

Activate and multiply T cells

What has been done in the project in the United States? "Every human organism possesses so-called WT1-reactive T cells with the ability to fight certain types of leukemia," Wölfl explains. Unfortunately, these cells exist in the body only in minute quantities: Among a million T cells, you will find no more than ten of the desired candidates.

Therefore, they must first be "fished" out of the blood and activated in the laboratory so that they divide and multiply if they are to be used for treatment. After a process of two months' duration, there are finally enough T cells available for preparing a highly concentrated infusion for the patients.

Surprise after 15 years of work

For a period of three years, Wölfl was involved in this major project of the Fred Hutchinson Cancer Research Center in Seattle. In total, however, the results published now are based on 15 years of research. And there is a surprise in store: "The way in which the T cells are activated in the laboratory appears to play quite a decisive role in determining their therapeutic effect," says Wölfl.

What the researchers found out: If the T cells come into contact with the messenger substance interleukin 21 during their activation, they are far more durable later on, which prolongs their activity against cancer. They could be detected in the blood of the patients for up to one year. If the interleukin was missing during activation, by contrast, they vanished after less than four weeks.

Patients with a high risk of relapse

The T cells were tested in eleven adult patients in the USA. All of them had already undergone the usual leukemia treatments and they started out in a difficult situation: All of them had previously even received stem cell transplants and they all had a high risk of relapse.

"Under these conditions, it is already a success that the treatment had an effect on the malignant cells in some of the patients. Three patients even survived for longer than two years free of leukemia," says Wölfl.
Only eleven patients and no control group? "The study was set up as a phase I/II trial, which is at the start of any drug development. The efficacy issue should not be raised at this point, because you need far more patients undergoing such treatment in order to decide on its effectiveness," Wölfl explains. Nevertheless, the study yields valuable insights about the biological behavior of the T cells and their application safety. Furthermore, it shows that this type of immunotherapy represents a promising approach for successful treatments.

Additional element of cancer treatment

"Generally, T cells cannot be more than an additional element of cancer treatment," Wölfl points out. Their application should be considered for patients in whom the number of cancer cells has been drastically reduced by conventional treatment: "Immunotherapy works best in such a situation."

Immunotherapy of brain tumors

At the Department of Pediatrics of the University Hospital of Würzburg, Matthias Wölfl also studies immunotherapy with T cells. In cooperation with Professor Paul Gerhardt Schlegel and Professor Matthias Eyrich, he investigates how T cells should be activated and primed so that they increase the survival chances of children and adolescents with malignant brain tumors (glioblastomas).

The project partners are still in the middle of their work and patients cannot yet be treated with the method. This therapeutic approach is also intended to provide only a supplement to conventional treatment (surgery, chemotherapy, radiation therapy). The method should by no means be construed as a new "silver bullet" for brain tumors, Wölfl advises.

The brain tumor project is supported by the Bavarian Research Network BayImmuNet and receives substantial funds from a registered society of parents committed to helping children affected by leukemia and other tumors by the name of "Elterninitiative Aktion Regenbogen für leukämie- und tumorkranke Kinder Main-Tauber e.V.".

Contact person

PD Dr. Matthias Wölfl, University Hospital of Würzburg, Department of Pediatrics, T (0931) 201-27114, woelfl_m@klinik.uni-wuerzburg.de
Ergänzung vom 28.02.2013
„Transferred WT1-Reactive CD8+ T Cells Can Mediate Antileukemic Activity and Persist in Post-Transplant Patients”, Aude G. Chapuis, Gunnar B. Ragnarsson, Hieu N. Nguyen, Colette N. Chaney, Jeffrey S. Pufnock, Thomas M. Schmitt, Natalie Duerkopp, Ilana M. Roberts, Galina L. Pogosov, William Y. Ho, Sebastian Ochsenreither, Matthias Wölfl, Merav Bar, Jerald P. Radich, Cassian Yee, and Philip D. Greenberg, Science Translational Medicine, 27. Februar 2013, Vol. 5, Issue 174, p. 174ra27, DOI: 10.1126/scitranslmed.3004916

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>