Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Identified Stem Cells May Hold Clues to Colon Cancer

02.04.2012
Vanderbilt-Ingram Cancer Center researchers have identified a new population of intestinal stem cells that may hold clues to the origin of colorectal cancer.

This new stem cell population, reported March 30 in the journal Cell, appears to be relatively quiescent (inactive) – in contrast to the recent discovery of intestinal stem cells that multiply rapidly – and is marked by a protein, Lrig1, that may act as a “brake” on cell growth and proliferation.

The researchers have also developed a new and clinically relevant mouse model of colorectal cancer that investigators can now use to better understand where and how the disease arises, as well as for probing new therapeutic targets.

Colorectal cancer is the second leading cause of cancer deaths in the United States. These tumors are thought to arise from a series of mutations in intestinal stem cells, which are long-lived, self-renewing cells that gives rise to all cell types in the intestinal tract.

For more than 30 years, scientists believed that intestinal stem cells were primarily quiescent, proliferating only rarely in order to protect the tissue against cancer. Then, in 2007, researchers reported finding a population of intestinal stem cells (marked by the molecule Lgr5) that were highly proliferative.

Those findings “really changed the way we think about intestinal stem cells,” said Robert Coffey, Jr., M.D., Ingram Professor of Cancer Research, co-chair of Vanderbilt’s Epithelial Biology Center and senior author on the study.

“It came to so dominate the field that it raised the question about whether quiescent stem cells even exist…and that’s where we enter into the picture.”

Coffey’s lab studies the epidermal growth factor (EGF) signaling pathway – which includes a family of receptors known as ErbBs – and its role in cancers of epithelial tissues, like the intestinal tract.

Postdoctoral fellow Anne Powell, Ph.D., led the recent experiments showing that Lrig1, a molecule that regulates ErbB activity, is present in intestinal cells that have the qualities of stem cells (self-renewal, and the ability to produce all the cells of the intestine).

“Essentially, what we show is that the Lrig1-expressing cells are stem cells and they are largely quiescent,” Powell said. “We also show that they’re distinct from the Lgr5-expressing stem cells that had become a sort of ‘hallmark’ stem cell population…with different gene expression profiles and different proliferative status.”

They also showed that Lrig1 is not only a marker of intestinal stem cells, but also acts as a tumor suppressor and inhibits the growth and proliferative signals of the ErbB family – acting as a sort of “brake” on cell proliferation that can lead to cancer.

Postdoctoral fellow Yang Wang, Ph.D., eliminated Lrig1 in mice and showed that nearly all of those mice developed intestinal tumors, providing further evidence suggesting that Lrig1 functions as a tumor suppressor.

The findings underscore the importance of ErbB signaling in the behavior of intestinal stem cells from which colorectal cancer may arise.

Most exciting, said Coffey, is that the mouse model his lab has generated as a part of these studies is one of the only mouse models to develop tumors in section of the intestines where most human tumors develop: the colon. One additional advantage of this model, in contrast to others, is that the tumors develop quickly and can be easily monitored with endoscopy, which will make it easier to assess how therapeutic interventions are working.

“We are fairly confident that this will be the ‘go-to’ model to study colon cancer in mice for the foreseeable future,” Coffey said.

Emily Poulin, Jim Higginbotham, Ph.D., and Jeff Franklin, Ph.D., (from the Coffey lab), Kay Washington, M.D., Ph.D., and Yu Shyr, Ph.D., contributed to the research.

The work was funded by grants from the National Cancer Institute and the National Institute of General Medical Sciences of the National Institutes of Health.

Craig Boerner | Newswise Science News
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Drug discovery: First rational strategy to find molecular glue degraders
03.08.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Chlamydia: Greedy for Glutamine
03.08.2020 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>